Nav: Home

Transportable laser

January 22, 2018

The Physikalisch-Technische Bundesanstalt (PTB) is known for providing time e.g. for radio-controlled clocks. For this purpose, it operates some of the best cesium atomic clocks in the world. At the same time, PTB is already developing various atomic clocks of the next generation. These clocks are no longer based on a microwave transition in cesium, but they rather operate with other atoms that are excited using optical frequencies. Some of these new clocks can even be transported to other locations. At its QUEST Institute, PTB is currently developing a transportable optical aluminum clock in order to measure physical phenomena (such as the red shift that was predicted by Einstein) outside a laboratory. A prerequisite for this is that the required lasers are able to endure transportation to other locations. PTB physicists have therefore developed a frequency-doubling unit that will even continue to operate when it has been shaken at three times the Earth's gravitational acceleration. The results have been published in the current issue of the Review of Scientific Instruments.

It was Einstein who found out that two clocks that are located at two different positions in the gravitational field of the Earth tick at different speeds. What initially sounds like a bizarre idea has quite practical effects: Two optical atomic clocks having an extremely small relative measurement uncertainty of 10-18 can measure the difference in height between arbitrary points on the Earth at an accuracy of just one centimeter. This so-called "chronometric levelling" represents an important application of clocks in geodesy. One of the prerequisites for this is that the optical frequencies of the two clocks can be compared e.g. via glass fibers.

PTB is currently developing several different types of atomic clocks that can each be transported in a trailer or in a container. Their operation outside a protected laboratory, however, involves many challenges: The ambient temperature, for example, is much less stable. Furthermore, significant shocks may occur during transportation. This is why optical structures that have worked perfectly well in the laboratory may initially be unusable at the destination. They must painstakingly be readjusted - which leads to a loss of valuable research time.

This last-mentioned problem concerns in particular the transportable aluminum clock that is being developed at the QUEST Institute. This clock requires, among other things, two UV lasers at 267 nm. For this wavelength, it is not possible to simply buy a laser diode. Instead, a long-wave infrared laser must be frequency-doubled twice in succession. During this process, the light is coupled into a closed ring of four mirrors so that a high optical power is circulating within the ring. A non-linear crystal placed in this ring transforms the circulating light into light of half the wavelength. Due to the dichroic coating of the mirror, it passes out of the resonator and is then used for reading the clock. The QUEST Institute has developed a design for this so-called frequency-doubling cavity which is based on a monolithic - and therefore highly stable - frame onto which all mirrors and the crystal are mounted. The set-up is sealed to be gas-tight to the outside in order to protect the crystal, which is highly sensitive even to the slightest contaminations.

The developers of the cavity were able to demonstrate on a prototype that it also doubles the laser light while it is exposed to accelerations of 1 g. Furthermoe, it was shown that the frequency doubling efficiency is not impaired after being subjected to accelerations of up to 3 g for 30 minutes. This corresponds to five times the value stated in Standard ISO 13355:2016 about road transportation on trucks. The cavity is, however, not only mechanically robust, but it is just as efficient as comparable systems that have been developed by research groups of other institutes. Moreover, 130 hours of uninterrupted continuous operation was demonstrated.

In view of these properties, the QUEST Institute has made several of these doubling cavities for different wavelengths (not only for UV) which became integral components of various quantum-optical experiments, with the aim of providing these experiments reliably with laser light. Moreover, a German optomechanics company has licensed the design in order to use it as a basis for a commercial product. This project was supported by the Deutsche Forschungsgesellschaft (grant CRC 1128 geo-Q, Project A03, CRC 1227 DQ-mat, Projects B03 and B05) and the Leibniz-Gemeinschaft (SAW-2013-FBH-3).
-end-
Contact

Prof. Dr. Piet O. Schmidt, QUEST, phone: +49 (0)531 592-4700, e-mail: piet.schmidt@ptb.de

Scientific publication

S. Hannig, J. Mielke, J. Fenske, M. Misera, N. Beef, C. Ospelkaus, P.O. Schmidt: A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet. Review of Scientific Instruments 89, 013106 (2018)

A "Scilight" of the publication was published by AIP ("A robust frequency doubling cavity makes a transportable laser source for use in a UV optical clock"): http://scitation.aip.org/content/aip/journal/sci/2018/3/10.1063/1.5021479

Physikalisch-Technische Bundesanstalt (PTB)

Related Laser Light Articles:

One billion suns: World's brightest laser sparks new behavior in light
Using the brightest light ever produced on Earth, University of Nebraska-Lincoln physicists have changed the way light behaves.
Changing the color of laser light on the femtosecond time scale
Using femtosecond visible and terahertz (THz) pulses as external perturbations, scientists at Tokyo Institute of Technology and Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) have investigated the second harmonic generation effect in photoexcited BiCoO3.
No green light for latest traffic light app following expert evaluation
Psychologist Dr Kyle Wilson takes a 'human look' at a new vehicle traffic light app ahead of plans to introduce similar devices into 'connected vehicles'
Red light, green light invention prevents work interruptions
A UBC computer scientist has invented a unique desk light that automatically switches from green to red when you are 'in the zone' and shouldn't be disturbed by colleagues.
Biggest X-ray laser in the world generates its first laser light
European XFEL, the biggest X-ray laser in the world, has generated its first X-ray laser light.
Shedding light on the absorption of light by titanium dioxide
EPFL scientists have uncovered the hidden properties of titanium dioxide, one of the most promising materials for light-conversion technology.
Green laser light probes metals for hidden damage (animation)
Imagine being able to check the structural integrity of an airplane, ship or bridge, without having to dismantle it or remove any material for testing, which could further compromise the structure.
Controlling fast X-ray pulses with laser light
When hit by light, electrons are excited and begin to move.
Birds flying through laser light reveal faults in flight research, Stanford study shows
Parrotlets flying through a field of lasers and microparticles helped test three popular models that predict the lift generated by flying animals.
Scientists have 'scared away' microparticles with laser light
Olga Vinogradova, Professor at the Faculty of Physics, the Lomonosov Moscow State University, Director of laboratory at the Frumkin Institute of Physical chemistry and Electrochemistry (the Russian Academy of Sciences), together with Salim Maduar, a junior researcher of her group, being a part of an international scientific team, have suggested a new method of manipulation of microparticles at solid-liquid interface in water.

Related Laser Light Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.