Nav: Home

Transportable laser

January 22, 2018

The Physikalisch-Technische Bundesanstalt (PTB) is known for providing time e.g. for radio-controlled clocks. For this purpose, it operates some of the best cesium atomic clocks in the world. At the same time, PTB is already developing various atomic clocks of the next generation. These clocks are no longer based on a microwave transition in cesium, but they rather operate with other atoms that are excited using optical frequencies. Some of these new clocks can even be transported to other locations. At its QUEST Institute, PTB is currently developing a transportable optical aluminum clock in order to measure physical phenomena (such as the red shift that was predicted by Einstein) outside a laboratory. A prerequisite for this is that the required lasers are able to endure transportation to other locations. PTB physicists have therefore developed a frequency-doubling unit that will even continue to operate when it has been shaken at three times the Earth's gravitational acceleration. The results have been published in the current issue of the Review of Scientific Instruments.

It was Einstein who found out that two clocks that are located at two different positions in the gravitational field of the Earth tick at different speeds. What initially sounds like a bizarre idea has quite practical effects: Two optical atomic clocks having an extremely small relative measurement uncertainty of 10-18 can measure the difference in height between arbitrary points on the Earth at an accuracy of just one centimeter. This so-called "chronometric levelling" represents an important application of clocks in geodesy. One of the prerequisites for this is that the optical frequencies of the two clocks can be compared e.g. via glass fibers.

PTB is currently developing several different types of atomic clocks that can each be transported in a trailer or in a container. Their operation outside a protected laboratory, however, involves many challenges: The ambient temperature, for example, is much less stable. Furthermore, significant shocks may occur during transportation. This is why optical structures that have worked perfectly well in the laboratory may initially be unusable at the destination. They must painstakingly be readjusted - which leads to a loss of valuable research time.

This last-mentioned problem concerns in particular the transportable aluminum clock that is being developed at the QUEST Institute. This clock requires, among other things, two UV lasers at 267 nm. For this wavelength, it is not possible to simply buy a laser diode. Instead, a long-wave infrared laser must be frequency-doubled twice in succession. During this process, the light is coupled into a closed ring of four mirrors so that a high optical power is circulating within the ring. A non-linear crystal placed in this ring transforms the circulating light into light of half the wavelength. Due to the dichroic coating of the mirror, it passes out of the resonator and is then used for reading the clock. The QUEST Institute has developed a design for this so-called frequency-doubling cavity which is based on a monolithic - and therefore highly stable - frame onto which all mirrors and the crystal are mounted. The set-up is sealed to be gas-tight to the outside in order to protect the crystal, which is highly sensitive even to the slightest contaminations.

The developers of the cavity were able to demonstrate on a prototype that it also doubles the laser light while it is exposed to accelerations of 1 g. Furthermoe, it was shown that the frequency doubling efficiency is not impaired after being subjected to accelerations of up to 3 g for 30 minutes. This corresponds to five times the value stated in Standard ISO 13355:2016 about road transportation on trucks. The cavity is, however, not only mechanically robust, but it is just as efficient as comparable systems that have been developed by research groups of other institutes. Moreover, 130 hours of uninterrupted continuous operation was demonstrated.

In view of these properties, the QUEST Institute has made several of these doubling cavities for different wavelengths (not only for UV) which became integral components of various quantum-optical experiments, with the aim of providing these experiments reliably with laser light. Moreover, a German optomechanics company has licensed the design in order to use it as a basis for a commercial product. This project was supported by the Deutsche Forschungsgesellschaft (grant CRC 1128 geo-Q, Project A03, CRC 1227 DQ-mat, Projects B03 and B05) and the Leibniz-Gemeinschaft (SAW-2013-FBH-3).
-end-
Contact

Prof. Dr. Piet O. Schmidt, QUEST, phone: +49 (0)531 592-4700, e-mail: piet.schmidt@ptb.de

Scientific publication

S. Hannig, J. Mielke, J. Fenske, M. Misera, N. Beef, C. Ospelkaus, P.O. Schmidt: A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet. Review of Scientific Instruments 89, 013106 (2018)

A "Scilight" of the publication was published by AIP ("A robust frequency doubling cavity makes a transportable laser source for use in a UV optical clock"): http://scitation.aip.org/content/aip/journal/sci/2018/3/10.1063/1.5021479

Physikalisch-Technische Bundesanstalt (PTB)

Related Laser Light Articles:

Researchers combine X-rays and laser light to image sprays
Researchers have developed a new laser-based method that provides an unprecedented view of sprays such as the ones used for liquid fuel combustion in vehicle, ship and plane engines.
Laser diode emits deep UV light
Nagoya University researchers say they have designed a laser diode that emits the shortest-wavelength ultraviolet light to-date, with potential applications in disinfection, dermatology, and DNA analyses.
Machine learning enhances light-beam performance at the advanced light source
A team of researchers at Berkeley Lab and UC Berkeley has successfully demonstrated how machine-learning tools can improve the stability of light beams' size for science experiments at a synchrotron light source via adjustments that largely cancel out unwanted fluctuations.
Weaving quantum processors out of laser light
Researchers open a new avenue to quantum computing with a breakthrough experiment: a large-scale quantum processor made entirely of light.
Shedding light on the reaction mechanism of PUVA light therapy for skin diseases
Together with their Munich-based colleagues, a team of physical chemists from Heinrich Heine University Düsseldorf (HHU) has clarified which chemical reactions take place during PUVA therapy.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.
Environmentally stable laser emits exceptionally pure light
Researchers have developed a compact laser that emits light with extreme spectral purity that doesn't change in response to environmental conditions.
Laser tech could be fashioned into Earth's 'porch light' to attract alien astronomers
If extraterrestrial intelligence exists somewhere in our galaxy, a new MIT study proposes that laser technology on Earth could, in principle, be fashioned into something of a planetary porch light -- a beacon strong enough to attract attention from as far as 20,000 light years away.
More Laser Light News and Laser Light Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.