Nav: Home

Transportable laser

January 22, 2018

The Physikalisch-Technische Bundesanstalt (PTB) is known for providing time e.g. for radio-controlled clocks. For this purpose, it operates some of the best cesium atomic clocks in the world. At the same time, PTB is already developing various atomic clocks of the next generation. These clocks are no longer based on a microwave transition in cesium, but they rather operate with other atoms that are excited using optical frequencies. Some of these new clocks can even be transported to other locations. At its QUEST Institute, PTB is currently developing a transportable optical aluminum clock in order to measure physical phenomena (such as the red shift that was predicted by Einstein) outside a laboratory. A prerequisite for this is that the required lasers are able to endure transportation to other locations. PTB physicists have therefore developed a frequency-doubling unit that will even continue to operate when it has been shaken at three times the Earth's gravitational acceleration. The results have been published in the current issue of the Review of Scientific Instruments.

It was Einstein who found out that two clocks that are located at two different positions in the gravitational field of the Earth tick at different speeds. What initially sounds like a bizarre idea has quite practical effects: Two optical atomic clocks having an extremely small relative measurement uncertainty of 10-18 can measure the difference in height between arbitrary points on the Earth at an accuracy of just one centimeter. This so-called "chronometric levelling" represents an important application of clocks in geodesy. One of the prerequisites for this is that the optical frequencies of the two clocks can be compared e.g. via glass fibers.

PTB is currently developing several different types of atomic clocks that can each be transported in a trailer or in a container. Their operation outside a protected laboratory, however, involves many challenges: The ambient temperature, for example, is much less stable. Furthermore, significant shocks may occur during transportation. This is why optical structures that have worked perfectly well in the laboratory may initially be unusable at the destination. They must painstakingly be readjusted - which leads to a loss of valuable research time.

This last-mentioned problem concerns in particular the transportable aluminum clock that is being developed at the QUEST Institute. This clock requires, among other things, two UV lasers at 267 nm. For this wavelength, it is not possible to simply buy a laser diode. Instead, a long-wave infrared laser must be frequency-doubled twice in succession. During this process, the light is coupled into a closed ring of four mirrors so that a high optical power is circulating within the ring. A non-linear crystal placed in this ring transforms the circulating light into light of half the wavelength. Due to the dichroic coating of the mirror, it passes out of the resonator and is then used for reading the clock. The QUEST Institute has developed a design for this so-called frequency-doubling cavity which is based on a monolithic - and therefore highly stable - frame onto which all mirrors and the crystal are mounted. The set-up is sealed to be gas-tight to the outside in order to protect the crystal, which is highly sensitive even to the slightest contaminations.

The developers of the cavity were able to demonstrate on a prototype that it also doubles the laser light while it is exposed to accelerations of 1 g. Furthermoe, it was shown that the frequency doubling efficiency is not impaired after being subjected to accelerations of up to 3 g for 30 minutes. This corresponds to five times the value stated in Standard ISO 13355:2016 about road transportation on trucks. The cavity is, however, not only mechanically robust, but it is just as efficient as comparable systems that have been developed by research groups of other institutes. Moreover, 130 hours of uninterrupted continuous operation was demonstrated.

In view of these properties, the QUEST Institute has made several of these doubling cavities for different wavelengths (not only for UV) which became integral components of various quantum-optical experiments, with the aim of providing these experiments reliably with laser light. Moreover, a German optomechanics company has licensed the design in order to use it as a basis for a commercial product. This project was supported by the Deutsche Forschungsgesellschaft (grant CRC 1128 geo-Q, Project A03, CRC 1227 DQ-mat, Projects B03 and B05) and the Leibniz-Gemeinschaft (SAW-2013-FBH-3).
-end-
Contact

Prof. Dr. Piet O. Schmidt, QUEST, phone: +49 (0)531 592-4700, e-mail: piet.schmidt@ptb.de

Scientific publication

S. Hannig, J. Mielke, J. Fenske, M. Misera, N. Beef, C. Ospelkaus, P.O. Schmidt: A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet. Review of Scientific Instruments 89, 013106 (2018)

A "Scilight" of the publication was published by AIP ("A robust frequency doubling cavity makes a transportable laser source for use in a UV optical clock"): http://scitation.aip.org/content/aip/journal/sci/2018/3/10.1063/1.5021479

Physikalisch-Technische Bundesanstalt (PTB)

Related Laser Light Articles:

Weaving quantum processors out of laser light
Researchers open a new avenue to quantum computing with a breakthrough experiment: a large-scale quantum processor made entirely of light.
Shedding light on the reaction mechanism of PUVA light therapy for skin diseases
Together with their Munich-based colleagues, a team of physical chemists from Heinrich Heine University Düsseldorf (HHU) has clarified which chemical reactions take place during PUVA therapy.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.
Environmentally stable laser emits exceptionally pure light
Researchers have developed a compact laser that emits light with extreme spectral purity that doesn't change in response to environmental conditions.
Scientists discover novel process to convert visible light into infrared light
Columbia and Harvard scientists have developed a novel chemical process to convert infrared energy into visible light, allowing innocuous radiation to penetrate living tissue and other materials without the damage caused by high-intensity light exposure.
Laser tech could be fashioned into Earth's 'porch light' to attract alien astronomers
If extraterrestrial intelligence exists somewhere in our galaxy, a new MIT study proposes that laser technology on Earth could, in principle, be fashioned into something of a planetary porch light -- a beacon strong enough to attract attention from as far as 20,000 light years away.
NIST's electro-optic laser pulses 100 times faster than usual ultrafast light
Physicists at the National Institute of Standards and Technology (NIST) have used common electronics to build a laser that pulses 100 times more often than conventional ultrafast lasers.
'Optical rocket' created with intense laser light
An experiment at the University of Nebraska-Lincoln demonstrated how the application of intense light boosts electrons to their highest attainable speeds.
More Laser Light News and Laser Light Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.