Nav: Home

A 'hot Jupiter' with unusual winds

January 22, 2018

The hottest point on a gaseous planet near a distant star isn't where astrophysicists expected it to be - a discovery that challenges scientists' understanding of the many planets of this type found in solar systems outside our own.

Unlike our familiar planet Jupiter, so-called hot Jupiters circle astonishingly close to their host star -- so close that it typically takes fewer than three days to complete an orbit. And one hemisphere of these planets always faces its host star, while the other faces permanently out into the dark.

Not surprisingly, the "day" side of the planets gets vastly hotter than the night side, and the hottest point of all tends to be the spot closest to the star. Astrophysicists theorize and observe that these planets also experience strong winds blowing eastward near their equators, which can sometimes displace the hot spot toward the east.

In the mysterious case of exoplanet CoRoT-2b, however, the hot spot turns out to lie in the opposite direction: west of center. A research team led by astronomers at McGill University's McGill Space Institute (MSI) and the Institute for research on exoplanets (iREx) in Montreal made the discovery using NASA's Spitzer Space Telescope. Their findings are reported Jan. 22 in the journal Nature Astronomy.

Wrong-way wind

"We've previously studied nine other hot Jupiter, giant planets orbiting super close to their star. In every case, they have had winds blowing to the east, as theory would predict," says McGill astronomer Nicolas Cowan, a co-author on the study and researcher at MSI and iREx. "But now, nature has thrown us a curveball. On this planet, the wind blows the wrong way. Since it's often the exceptions that prove the rule, we are hoping that studying this planet will help us understand what makes hot Jupiters tick."

CoRoT-2b, discovered a decade ago by a French-led space observatory mission, is 930 light years from Earth. While many other hot Jupiters have been detected in recent years, CoRoT-2b has continued to intrigue astronomers because of two factors: its inflated size and the puzzling spectrum of light emissions from its surface.

"Both of these factors suggest there is something unusual happening in the atmosphere of this hot Jupiter," says Lisa Dang, a McGill PhD student and lead author of the new study. By using Spitzer's Infrared Array Camera to observe the planet while it completed an orbit around its host star, the researchers were able to map the planet's surface brightness for the first time, revealing the westward hot spot.

New questions

The researchers offer three possible explanations for the unexpected discovery - each of which raises new questions:
  • The planet could be spinning so slowly that one rotation takes longer than a full orbit of its star; this could create winds blowing toward the west rather than the east - but it would also undercut theories about planet-star gravitational interaction in such tight orbits.

  • The planet's atmosphere could be interacting with the planet's magnetic field to modify its wind pattern; this could provide a rare opportunity to study an exoplanet's magnetic field.

  • Large clouds covering the eastern side of the planet could make it appear darker than it would otherwise - but this would undercut current models of atmospheric circulation on such planets.


"We'll need better data to shed light on the questions raised by our finding," Dang says. "Fortunately, the James Webb Space Telescope, scheduled to launch next year, should be capable of tackling this problem. Armed with a mirror that has 100 times the collecting power of Spitzer's, it should provide us with exquisite data like never before."
-end-
Scientists from the University of Michigan, the California Institute of Technology, Arizona State University, New York University Abu Dhabi, the University of California, Santa Cruz, and Pennsylvania State University also contributed to the study.

"Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b," Lisa Dang, Nicolas B. Cowan, Joel C. Schwartz, et al. Nature Astronomy, Jan. 22, 2018. https://doi.org/10.1038/s41550-017-0351-6

Funding for the research was provided in part by the Natural Sciences and Engineering Research Council of Canada and the California Institute of Technology's Infrared Processing and Analysis Center.

McGill University

Related Planets Articles:

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
Dead planets can 'broadcast' for up to a billion years
Astronomers are planning to hunt for cores of exoplanets around white dwarf stars by 'tuning in' to the radio waves that they emit.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Five planets revealed after 20 years of observation
To confirm the presence of a planet, it is necessary to wait until it has made one or more revolutions around its star.
More Planets News and Planets Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...