Nav: Home

Scientists discover material ideal for smart photovoltaic windows

January 22, 2018

Smart windows that are transparent when it's dark or cool but automatically darken when the sun is too bright are increasingly popular energy-saving devices. But imagine that when the window is darkened, it simultaneously produces electricity. Such a material - a photovoltaic glass that is also reversibly thermochromic - is a green technology researchers have long worked toward, and now, scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated a way to make it work.

Researchers at Berkeley Lab, a Department of Energy (DOE) national lab, discovered that a form of perovskite, one of the hottest materials in solar research currently due to its high conversion efficiency, works surprisingly well as a stable and photoactive semiconductor material that can be reversibly switched between a transparent state and a non-transparent state, without degrading its electronic properties.

The research, led by Peidong Yang of Berkeley Lab's Materials Sciences Division, was published this week in the journal Nature Materials in a study titled, "Thermochromic Halide Perovskite Solar Cells." The lead authors were Jia Lin, Minliang Lai, and Letian Dou, all in Yang's research group.

The scientists made the discovery while investigating the phase transition of the material, an inorganic perovskite. "This class of inorganic halide perovskite has amazing phase transition chemistry," said Yang, who is also a professor in UC Berkeley's departments of Chemistry, and Materials Science and Engineering. "It can essentially change from one crystal structure to another when we slightly change the temperature or introduce a little water vapor."

When the material changes its crystal structure, it changes from transparent to non-transparent. "These two states have the exact same composition but very different crystal structures," he said. "That was very interesting to us. So you can easily manipulate it in such a way that is not readily available in existing conventional semiconductors."

Halide perovskite materials are compounds that have the crystal structure of the mineral perovskite. Its unique properties, high efficiency rates, and ease of processing have made it one of the most promising developments in solar technology in recent years.

Researchers at another DOE lab, the National Renewable Energy Laboratory (NREL), recently made a related discovery, using a chemical reaction in a hybrid perovskite to demonstrate a switchable solar window.

The Berkeley Lab researchers did not originally set out to develop a thermochromic solar window. They were investigating phase transitions in perovskite solar cells and trying to improve the stability in the prototypical organic-inorganic hybrid perovskite methylammonium lead iodide. So they tried using cesium to replace the methylammonium.

"The chemical stability improved dramatically, but unfortunately the phase was not stable," said Dou, who was a postdoctoral research fellow and is now an assistant professor at Purdue University. "It transformed into the low-T [temperature] phase. It was a drawback, but then we turned it into something that's unique and useful."

The material is triggered to transition from the low-T to high-T phase (or from transparent to non-transparent) by applying heat. In the lab, the temperature required was about 100 degrees Celsius. Yang said they are working to bring it down to 60 C.

Lin, a Berkeley Lab postdoctoral fellow, said moisture, or humidity, was used in the lab to trigger the reverse transition. "The amount of moisture needed depends on the composition and the transition time desired," he said. "For example, more bromide makes the material more stable, so the same humidity would require longer time to transform from the high-T to low-T state."

The researchers will also continue to work on developing alternative ways to trigger the reverse transition, such as by applying voltage, or engineering the source of the moisture.

"The solar cell shows fully reversible performance and excellent device stability over repeated phase transition cycles without any color fade or performance degradation," said Lai, a graduate student in Yang's group. "With a device like this, a building or car can harvest solar energy through the smart photovoltaic window."
-end-
The research was supported by DOE's Office of Science. Other co-authors of the paper are from UC Berkeley, Stockholm University, and Lawrence Livermore National Laboratory. The Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory and the Advanced Light Source at Berkeley Lab, both DOE Office of Science User Facilities, were used to collect some of the data.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Crystal Structure Articles:

Machine learning technique speeds up crystal structure determination
A computer-based method could make it less labor-intensive to determine the crystal structures of various materials and molecules, including alloys, proteins and pharmaceuticals.
An improved method for protein crystal structure visualization
During crystallization atoms are arranged in a 3D lattice structured in a specific way.
Gazing into crystal balls to advance understanding of crystal formation
Researchers at The University of Tokyo Institute of Industrial Science conducted simulations considering and neglecting hydrodynamic interactions to determine whether or not these interactions cause the large discrepancy observed between experimental and calculated nucleation rates for hard-sphere colloidal systems, which are used to model crystallization.
4D imaging with liquid crystal microlenses
Most images captured by a camera lens are flat and two dimensional.
Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
One of the main factors favoring a microorganism's survival in extreme conditions is preserving ribosomes -- a macromolecular complex comprising RNA and proteins
A laser, a crystal and molecular structures
Researchers have built a new tool to study molecules using a laser, a crystal and light detectors.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Crystal clear: Understanding magnetism changes caused by crystal lattice expansion
An international team including researchers from Osaka University demonstrated helimagnetic behavior in a cubic perovskite material by expanding the lattice through barium doping.
Capturing the surprising flexibility of crystal surfaces
Images taken using an atomic force microscope have allowed researchers to observe, for the first time, the flexible and dynamic changes that occur on the surfaces of 'porous coordination polymer' crystals when guest molecules are introduced.
How a crystal is solvated in water
How a molecule from a solid crystal structure is solvated in a liquid solvent has been observed at a molecular level for the first time by chemists at Ruhr-Universität Bochum.
More Crystal Structure News and Crystal Structure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.