Nav: Home

Study shows first evidence of winds outside black holes throughout their mealtimes

January 22, 2018

EDMONTON--New research shows the first evidence of strong winds around black holes throughout bright outburst events when a black hole rapidly consumes mass.

The study, published in Nature, sheds new light on how mass transfers to black holes and how black holes can affect the environment around them. The research was conducted by an international team of researchers, led by scientists in the University of Alberta's Department of Physics.

Using data from three international space agencies spanning 20 years, the scientists used new statistical techniques to study outbursts from stellar-mass black hole X-ray binary systems. Their results show evidence of consistent and strong winds surrounding black holes throughout outbursts. Until now, strong winds had only been seen in limited parts of these events.

"Winds must blow away a large fraction of the matter a black hole could eat,'' described Bailey Tetarenko, PhD student and lead author on the study. "In one of our models, the winds removed 80 per cent of the black hole's potential meal."

Depending on their size, stellar-mass black holes have the capacity to consume everything within a 3 to 150 kilometre radius. "Not even light can escape from this close to a black hole," explained Gregory Sivakoff, associate professor of physics and co-author. Other, much larger black holes, called supermassive black holes, appear to have affected the formation of entire galaxies. "But even supermassive black holes are smaller than our solar system. While they are small, black holes can have surprisingly large effects," explained Sivakoff.

So, what exactly causes these winds in space? For now, it remains a mystery. "We think magnetic fields play a key role. But we'll need to do a great deal of future investigation to understand these winds," explained Craig Heinke, associate professor of physics and co-author.

"Strong disk winds traced throughout outbursts in black-hole X-ray binaries" will be published online January 22 in Nature, one of the world's top peer-reviewed scientific publications. (doi: 10.1038/nature25159)
-end-
This work was completed by Bailey Tetarenko, Craig Heinke, and Gregory Sivakoff at the University of Alberta, Jean-Pierre Lasota at the Institut d'Astrophysique de Paris and Nicolaus Copernicus Astronomical Centre in Warsaw, and Guillaume Dubus at the Institut de Planétologie et d'Astrophysique de Grenoble. Data used was collected from five international X-ray observatories: NASA's Rossi X-ray Timing Explorer, Neil Gehrels Swift Observatory, and Chandra X-Observatory; the Japan Aerospace Exploration Agency's Monitor of All-sky Image Telescope on the International Space Station; and the European Space Agency's X-ray Multi-Mirror Mission (XMM-Newton). Support for this work was provided by the Natural Sciences and Engineering Research Council of Canada, National Science Foundation, the Polish National Science Centre through an OPUS Grant, and the French Space Agency CNES.

The University of Alberta Faculty of Science is a research and teaching powerhouse dedicated to shaping the future by pushing the boundaries of knowledge in the classroom, laboratory, and field. Through exceptional teaching, learning, and research experiences, we competitively position our students, staff, and faculty for current and future success.

University of Alberta

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.