Nav: Home

Combined nutrients and warming massively increase methane emissions from lakes

January 22, 2018

Shallow lakes in agricultural landscapes will emit significantly greater amounts of methane, mostly in the form of bubbles (ebullition) in a warmer world, which is a potential positive feedback mechanism to climate warming.

Submerged plants are key predictors of methane ebullition. The combination of warming with the loss of plants appears to transform shallow lakes into methane bubbling machines.

These are the main findings of a study published today in Nature Climate Change led by senior researcher Thomas A. Davidson, from the Lake group, Department of Bioscience and Arctic Research Centre, Aarhus University, Denmark.

Methane is a potent greenhouse gas with 25 times greater warming potential than carbon dioxide.

Methane sources in shallow lakes

Shallow lakes are increasingly recognised as playing an important role in global greenhouse gas cycling. Given the number of shallow lakes globally they potentially have a large influence on atmospheric methane concentrations, which continue to rise.

Methane is released from lakes in a number of ways, both by diffusion of dissolved gas and by bubbles released from the sediments, also called ebullition.

Ebullition is not constant, but happens in episodes of bubble release, so is hard to measure accurately. As a result it is not clear how much methane is released as bubbles from lakes, nor are we sure how it will respond to the combination of climate change and nutrient enrichment.

The present study used the longest running freshwater mesocosm climate change experiment in the world to investigate how warming and eutrophication might interact to change methane ebullition in the future.

The results here were striking as they showed that the combination of increased nutrient loading and warming had a synergistic effect on the ebullition of methane. In the absence of nutrient enrichment, warming alone increased annual methane ebullition by around 50% and its relative contribution to total methane emission rose from about 50% to 75%.

In stark contrast to this, when nutrient levels were high, warming increased total methane emission by at least six fold and in some cases 17 fold, and the proportion of ebullition increased to 95% of total annual methane flux (See Figure).

Submerged plants reduce methane ebullition

Nutrient enrichment, or eutrophication, is the most common human impact on fresh waters, with all lakes in agricultural landscapes likely to be impacted.

A feature of eutrophication in shallow lakes is the loss of biodiversity and the replacement of submerged plants by phytoplankton as the dominant primary producer.

The current study identified the abundance of submerged plants as a key predictor of methane ebullition. However, where plants were abundant, methane ebullition was reduced compared to when plants were absent, even at higher temperatures.

This suggests that through careful management of agricultural landscapes and fresh waters ensuring the proliferation of submerged plants, ebullition of methane can be minimised and in addition ecological condition and fresh water biodiversity will benefit.
-end-


Aarhus University

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...