Nav: Home

Combined nutrients and warming massively increase methane emissions from lakes

January 22, 2018

Shallow lakes in agricultural landscapes will emit significantly greater amounts of methane, mostly in the form of bubbles (ebullition) in a warmer world, which is a potential positive feedback mechanism to climate warming.

Submerged plants are key predictors of methane ebullition. The combination of warming with the loss of plants appears to transform shallow lakes into methane bubbling machines.

These are the main findings of a study published today in Nature Climate Change led by senior researcher Thomas A. Davidson, from the Lake group, Department of Bioscience and Arctic Research Centre, Aarhus University, Denmark.

Methane is a potent greenhouse gas with 25 times greater warming potential than carbon dioxide.

Methane sources in shallow lakes

Shallow lakes are increasingly recognised as playing an important role in global greenhouse gas cycling. Given the number of shallow lakes globally they potentially have a large influence on atmospheric methane concentrations, which continue to rise.

Methane is released from lakes in a number of ways, both by diffusion of dissolved gas and by bubbles released from the sediments, also called ebullition.

Ebullition is not constant, but happens in episodes of bubble release, so is hard to measure accurately. As a result it is not clear how much methane is released as bubbles from lakes, nor are we sure how it will respond to the combination of climate change and nutrient enrichment.

The present study used the longest running freshwater mesocosm climate change experiment in the world to investigate how warming and eutrophication might interact to change methane ebullition in the future.

The results here were striking as they showed that the combination of increased nutrient loading and warming had a synergistic effect on the ebullition of methane. In the absence of nutrient enrichment, warming alone increased annual methane ebullition by around 50% and its relative contribution to total methane emission rose from about 50% to 75%.

In stark contrast to this, when nutrient levels were high, warming increased total methane emission by at least six fold and in some cases 17 fold, and the proportion of ebullition increased to 95% of total annual methane flux (See Figure).

Submerged plants reduce methane ebullition

Nutrient enrichment, or eutrophication, is the most common human impact on fresh waters, with all lakes in agricultural landscapes likely to be impacted.

A feature of eutrophication in shallow lakes is the loss of biodiversity and the replacement of submerged plants by phytoplankton as the dominant primary producer.

The current study identified the abundance of submerged plants as a key predictor of methane ebullition. However, where plants were abundant, methane ebullition was reduced compared to when plants were absent, even at higher temperatures.

This suggests that through careful management of agricultural landscapes and fresh waters ensuring the proliferation of submerged plants, ebullition of methane can be minimised and in addition ecological condition and fresh water biodiversity will benefit.
-end-


Aarhus University

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".