Nav: Home

Digging deep into distinctly different DNA

January 22, 2018

A University of Queensland discovery has deepened our understanding of the genetic mutations that arise in different tissues, and how these are inherited.

Researchers from UQ's Queensland Brain Institute, led by Dr Steven Zuryn, found the rates of genetic mutations in mitochondrial DNA vary across differing tissue types, with the highest rate occurring in reproductive cells.

"Mitochondria are known as the cell's power plant - they are found in all animal and human cells - and in humans they generate about 90 per cent of the body's energy from the food we eat and the oxygen we breathe," Dr Zuryn said.

"In addition to regular DNA, which is contained in the nucleus, each cell also contains DNA in the mitochondria.

"Mitochondrial DNA is only passed down from the mother's side, and transmits the genetic information from one generation to the next."

The team studied the transparent roundworm (C. elegans), which shares about 60-80% of the same genes as humans, to shed light on the importance of mechanisms regulating the frequency of gene mutations in different cells and organs.

"C. elegans and humans share very similar mitochondria, and it is a useful organism as we can genetically tease apart the mechanisms of what is happening at a cellular level," he said.

The researchers developed an exceptionally pure method of isolating mitochondria from specific cells in the body to study them in detail.

"We now suspect that there is a mechanism in all animals that can filter out these mutations before they are passed to future offspring, which could otherwise cause a multitude of diseases affecting the brain," Dr Zuryn said.

In humans, mutations in mitochondrial DNA can cause rare but devastating diseases, especially in organs such as the brain, which relies heavily on mitochondria for energy.

The study is published in Nature Cell Biology.
-end-
The research was supported by the Stafford Fox Medical Research Foundation and the National Health and Medical Research Council.

University of Queensland

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

Native American DNA: Tribal Belonging and the False Promise of Genetic Science
by Kim TallBear (Author)

Advanced Topics in Forensic DNA Typing: Methodology
by John M. Butler (Author)

The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

Blueprint: How DNA Makes Us Who We Are (The MIT Press)
by Robert Plomin (Author)

DNA Science: A First Course, Second Edition
by David Micklos (Author), Greg Freyer (Author)

Potentiate Your DNA: A Practical Guide to Healing & Transformation with the Regenetics Method
by Sol Luckman (Author)

The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google
by Scott Galloway (Author)

Fundamentals of Forensic DNA Typing
by John M. Butler (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.