Nav: Home

Pathway opens to minimize waste in solar energy capture

January 22, 2018

Researchers at the ARC Centre of Excellence in Exciton Science have made an important discovery with significant implications for the future of solar cell material design.

The team, led by Professor Timothy Schmidt at UNSW, has been looking at ways to capture the energy of visible light that is currently wasted due to the limitations of silicon, which is only able to access approximately 25% of the solar spectrum. To illustrate, silicon on its own is only able to use of about half the energy of green light, which is the peak of the solar spectrum in terms of energy availability.

One of the ways to reduce this waste is through the design of materials that can be coated on top of silicon to capture some of the energy of light that silicon cannot. By incorporating singlet exciton fission, a process that generates two excitons from a single photon, it is hoped that silicon solar cell efficiencies can be boosted beyond 30%.

The work, published in Nature Chemistry, examines the role of a short-lived (~8 billionths of a second), excited molecular complex called an excimer in singlet exciton fission and overturns previous thinking by demonstrating that these singlet fission materials must avoid excimer formation to reach full potential in enhancing photovoltaic energy conversion.

Professor Schmidt explains, "As we look to find ways to bring down the cost of solar energy harvesting, we should be designing materials that avoid excimer formation."

"Singlet exciton fission has enormous promise for improving the efficiency of solar cells, but its dynamics are complex and not well understood. By comparing the fission process when it is run both forwards and in reverse, Schmidt, et al. have performed a remarkably simple test of theories for the mechanism of exciton fission" comments Professor Marc A. Baldo, member of the Centre's International Scientific Advisory Committee and Director of the Center of Excitonics at MIT.

"Their result suggests that what had previously been considered as an intermediate in the fission process may in fact be a source of loss. With this understanding Schmidt, et al. propose an important new direction in our search for materials that enable higher efficiency solar cells."
-end-


ARC Centre of Excellence in Exciton Science

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".