Nav: Home

Climate engineering, once started, would have severe impacts if stopped

January 22, 2018

Facing a climate crisis, we may someday spray sulfur dioxide into the upper atmosphere to form a cloud that cools the Earth, but suddenly stopping the spraying would have a severe global impact on animals and plants, according to the first study on the potential biological impacts of geoengineering, or climate intervention.

The study was published online today in Nature Ecology & Evolution. The paper was co-authored by Rutgers Distinguished Professor Alan Robock, research associate Lili Xia and postdoc Brian Zambri, all from the Department of Environmental Sciences at Rutgers University-New Brunswick. Other co-authors were from the University of Maryland, Yale University and Stony Brook University.

"Rapid warming after stopping geoengineering would be a huge threat to the natural environment and biodiversity," Robock said. "If geoengineering ever stopped abruptly, it would be devastating, so you would have to be sure that it could be stopped gradually, and it is easy to think of scenarios that would prevent that. Imagine large droughts or floods around the world that could be blamed on geoengineering, and demands that it stop. Can we ever risk that?"

Geoengineering means attempting to control the climate in addition to stopping the burning of fossil fuels, the main cause of global warming, Robock said. While scientists have studied the climate impacts of geoengineering in detail, they know almost nothing about its potential impacts on biodiversity and ecosystems, the study notes.

The geoengineering idea that's attracted the most attention is to create a sulfuric acid cloud in the upper atmosphere as large volcanic eruptions do, Robock said. The cloud, formed after airplanes spray sulfur dioxide, would reflect solar radiation and cool the planet. But airplanes would have to continuously fly into the upper atmosphere to maintain the cloud because it would last only about a year if spraying stopped, Robock said. He added that the airplane spraying technology may be developed within a decade or two.

In their study, the scientists used a global scenario with moderate cooling through geoengineering, and looked at the impacts on land and in the ocean from suddenly stopping it. They assumed that airplanes would spray 5 million tons of sulfur dioxide a year into the upper atmosphere at the Equator from 2020 to 2070. That's the annual equivalent of about one quarter of the sulfur dioxide ejected during the 1991 eruption of Mount Pinatubo in the Philippines, Robock said.

The spraying would lead to an even distribution of sulfuric acid clouds in the Northern and Southern Hemispheres. And that would lower the global temperature by about 1 degree Celsius (about 1.8 degrees Fahrenheit) - about the level of global warming since the Industrial Revolution began in the mid-1800s. But halting geoengineering would lead to rapid warming - 10 times faster than if geoengineering had not been deployed, Robock said.

The scientists then calculated how fast organisms would have to move to remain in the climate - in terms of both temperature and precipitation -- that they are accustomed to and could survive in, he said.

"In many cases, you'd have to go one direction to find the same temperature but a different direction to find the same precipitation," Robock said. "Plants, of course, can't move reasonably at all. Some animals can move and some can't."

He noted that national parks, forests and wildlife refuges serve as sanctuaries for animals, plants and other organisms. But if rapid warming forced them to move, and even if they could move fast enough, they may not be able find places with enough food to survive, he said.

One surprising side effect of rapidly starting geoengineering would be an El Niño warming of the sea surface in the tropical Pacific Ocean, which would cause a devastating drought in the Amazon, he said.

"We really need to look in a lot more detail at the impact on specific organisms and how they might adapt if geoengineering stops suddenly," he said.
-end-


Rutgers University

Related Biodiversity Articles:

Biodiversity is 3-D
The species-area relationship (SAC) is a long-time considered pattern in ecology and is discussed in most of academic Ecology books.
Thought Antarctica's biodiversity was doing well? Think again
Antarctica and the Southern Ocean are not in better environmental shape than the rest of the world.
Antarctica's biodiversity is under threat
A unique international study has debunked the popular view that Antarctica and the Southern Ocean are in much better ecological shape than the rest of the world.
Poor outlook for biodiversity in Antarctica
The popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world has been brought into question in a study publishing on March 28 in the open access journal PLOS Biology, by an international team lead by Steven L.
Temperature drives biodiversity
Why is the diversity of animals and plants so unevenly distributed on our planet?
Biodiversity needs citizen scientists
Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research?
Biodiversity loss in forests will be pricey
A new global assessment of forests -- perhaps the largest terrestrial repositories of biodiversity -- suggests that, on average, a 10 percent loss in biodiversity leads to a 2 to 3 percent loss in the productivity, including biomass, that forests can offer.
Biodiversity falls below 'safe levels' globally
Levels of global biodiversity loss may negatively impact on ecosystem function and the sustainability of human societies, according to UCL-led research.
Unravelling the costs of rubber agriculture on biodiversity
A striking decline in ant biodiversity found on land converted to a rubber plantation in China.
Nitrogen is a neglected threat to biodiversity
Nitrogen pollution is a recognized threat to sensitive species and ecosystems.

Related Biodiversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".