Nav: Home

Kicking an old can of worms -- the origin of the head in annelids

January 22, 2018

Researchers at the Royal Ontario Museum and the University of Toronto have described an exceptionally well-preserved new fossil species of bristle worm called Kootenayscolex barbarensis. Discovered from the 508-million-year-old Marble Canyon fossil site in the Burgess Shale in Kootenay National Park, British Columbia, the new species helps rewrite our understanding of the origin of the head in annelids, a highly diverse group of animals which includes today's leeches and earthworms. This research was published today in the journal Current Biology in the article A New Burgess Shale Polychaete and the Origin of the Annelid Head Revisited.

"Annelids are a hugely diverse group of animals in both their anatomies and lifestyles," said Karma Nanglu, a University of Toronto PhD candidate, and a researcher at the Royal Ontario Museum, as well as the study's lead author. "While this diversity makes them ecologically important and an evolutionarily interesting group to study, it also makes it difficult to piece together what the ancestral annelid may have looked like."

Annelids are found in nearly all marine environments from hydrothermal vents to coral reefs to the open ocean, and also include more evolutionary derived species living on land today. Although quite abundant in modern environments, their early evolutionary history, in particular the origin of their heads, is confounded by a relatively poor fossil record, with few species described from well-preserved body fossils near the evolutionary origins of the group.

Co-author Dr. Jean-Bernard Caron, Senior Curator of Invertebrate Palaeontology at the Royal Ontario Museum, Associate Professor in the departments of Ecology & Evolutionary Biology and Earth Sciences at U of T, and Nanglu's PhD supervisor, said: "While isolated pieces of annelid jaws and some annelid tubes are well known in the fossil record, preservation of their soft tissues is exceedingly rare. You need to look to truly exceptional fossil deposits like those found in the 508-million-year-old Burgess Shale locality in British Columbia to find well preserved body fossils. Even then, they're quite uncommon and many of the currently described species there are still poorly understood."

One key feature of the new Burgess Shale worm Kootenayscolex barbarensis is the presence of hair-sized bristles called chaetae on the head which led Nanglu and Caron to propose a new hypothesis regarding the early evolution of the head in annelids. "Like other bristle worms, Kootenayscolex possesses paired bundles of hair-sized bristles spread along the body; this is in fact one of the diagnostic features of this group of animals," Nanglu added. "However, unlike any living forms, these bristles were also partially covering the head, more specifically surrounding the mouth. This new fossil species seems to suggest that the annelid head evolved from posterior body segments which had pair bundles of bristles, a hypothesis supported by the developmental biology of many modern annelid species."

The Cambrian Period (541-485 million years ago) represents the first time that most animal groups appear in the fossil record, however, many species often possessed morphologies that were very unlike their modern relatives. "Coupling new fossil discoveries, such as Kootenayscolex, with a deeper understanding of developmental processes presents a powerful tool for investigating these unique morphologies and, ultimately, the origin of modern animal diversity," added Dr. Caron.

The description of Kootenayscolex is one of many new discoveries from the Burgess Shale site called Marble Canyon (Kootenay National Park) which are changing the way we think about the evolution of a wide array of animal groups. Dr. Caron led the ROM research team that uncovered this new locality in 2012, 40 km southeast of the original Burgess Shale site (Yoho National Park) in the Canadian Rockies. This new bristle worm is not only the most abundant species of annelid throughout the entire fossil record with more than 500 specimens recovered, but also the best preserved so far. "Some specimens preserved remnants of internal tissues, including possible nervous tissues, which is the first time we see evidence of such delicate features in a fossil annelid. This exceptional preservation opens a new chapter in the study of these ancient worms" added Caron.

"508 million years ago, the Marble Canyon would have been teeming with annelids," said Nanglu. "The fine anatomical details preserved in Kootenayscolex allow us to infer not only its evolutionary position, but also its lifestyle. Sediment preserved inside their guts suggest that, much as their relatives do in modern ecosystems, these worms served an important role in the food chain by recycling organic material from the sediment back to other animals that preyed on them."

The new annelid's species name, barbarensis, was chosen to honour Barbara Polk Milstein, who is a Royal Ontario Museum volunteer and longtime supporter of Burgess Shale research. Kootenayscolex barbarensis is brought to life by ROM visual artist and scientific illustrator Danielle Dufault.
-end-
Funding for the research was provided by the Royal Ontario Museum, the University of Toronto and the Natural Sciences and Engineering Research Council of Canada (grant number 341944). The specimens of Kootenayscolex curated at the Royal Ontario Museum were collected under several Parks Canada Research and Collection permits delivered to Jean-Bernard Caron between 2012 and 2016. The Burgess Shale fossil sites are located within Yoho and Kootenay National Parks. Parks Canada protects the sites and works with leading scientific researchers to expand knowledge and understanding of this key period of earth history. The Burgess Shale was designated a UNESCO World Heritage Site in 1980 due to its outstanding universal value, and is now part of the larger Canadian Rocky Mountain Parks World Heritage Site.

Royal Ontario Museum

Related Fossil Record Articles:

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.
Fossil record analysis hints at evolutionary origins of insects' structural colors
Researchers from Yale-NUS College in Singapore and University College Cork have analyzed preserved scales from wing cases of two fossil weevils from the Late Pleistocene era to better understand the origin of light-scattering nanostructures present in present-day insects.
Reconstructing the diet of fossil vertebrates
Paleodietary studies of the fossil record are impeded by a lack of reliable and unequivocal tracers.
Fossil is the oldest-known scorpion
Scientists studying fossils collected 35 years ago have identified them as the oldest-known scorpion species, a prehistoric animal from about 437 million years ago.
Canadian tundra formerly covered in rich forest: Ancient plant fossil record shows
Canada's northernmost islands, Ellesmere and Axel Heiberg islands in Nunavut, were home to a vibrant, temperate forest 56 million years ago, according to fossil research just published by University of Saskatchewan (USask) scientists.
New Colorado fossil record documents life's rebound after Cretaceous-Paleogene extinction
Nearly 66 million years ago, the reign of dinosaurs ended and the ascendency of mammals on Earth began.
Fossil fish gives new insights into the evolution
An international research team led by Giuseppe Marramà from the Institute of Paleontology of the University of Vienna discovered a new and well-preserved fossil stingray with an exceptional anatomy, which greatly differs from living species.
What color were fossil animals?
Dr. Michael Pittman of the Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong led an international study with his PhD student Mr.
A new normal: Study explains universal pattern in fossil record
Instead of the typical bell-shaped curve, the fossil record shows a fat-tailed distribution, with extreme, outlier, events occurring with higher-than-expected probability.
Fossil deposit is much richer than expected
Near the Dutch town of Winterswijk is an Eldorado for fossil lovers.
More Fossil Record News and Fossil Record Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Graham
If former Minneapolis police officer Derek Chauvin's case for the death of George Floyd goes to trial, there will be this one, controversial legal principle looming over the proceedings: The reasonable officer. In this episode, we explore the origin of the reasonable officer standard, with the case that sent two Charlotte lawyers on a quest for true objectivity, and changed the face of policing in the US. This episode was produced by Matt Kielty with help from Kelly Prime and Annie McEwen. Support Radiolab today at Radiolab.org/donate.