Marine vegetation can mitigate ocean acidification, UCI study finds

January 22, 2018

Irvine, Calif., Jan. 22, 2018 - Marine plants and seaweeds in shallow coastal ecosystems can play a key role in alleviating the effects of ocean acidification, and their robust population in shoreline environments could help preserve declining shellfish life, according to a study by University of California, Irvine ecologists.

In a new study on the Pacific Coast, Nyssa Silbiger, former UCI postdoctoral researcher, and Cascade Sorte, assistant professor of ecology & evolutionary biology, determined that marine plants and seaweeds decrease the acidity of their surroundings through photosynthesis. Their findings suggest that maintaining native seawater vegetation could locally lessen the acidifying effects of rising CO2 levels on marine animals who are sensitive to ocean pH, which has declined since preindustrial times.

The study results appear online in the open-access Scientific Reports. "Our findings from sites spanning some 1,000 miles of coastline show that marine life plays a leading role in driving local pH conditions," Sorte said.

About 90 percent of fishery catch comes from coastal ecosystems. Any coastal pH decrease has a major impact on animals such as corals, oysters and mussels, whose shells and skeletons can become more brittle in low-pH environments.

This is a major concern for shellfish fisheries, which contribute over $1 billion annually to the U.S. economy while providing more than 100,000 jobs.

Due to their findings, the authors recommend efforts to conserve marine plants and seaweeds in shoreline habitats, including where commercial seafood is harvested.

"The environmental and economic consequences resulting from ocean acidification are dire," said Silbiger, now an assistant professor of biology at California State University, Northridge. "Decreasing CO2 emissions is still the No. 1 most important way to protect our marine ecosystems, but our research indicates that marine life also has substantial control over coastal pH."
-end-
The study received UCI seed funding for single- and multi-investigator research projects and support from the UCI OCEANS Initiative; research travel was sponsored by GoWesty.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

University of California - Irvine

Related Ocean Acidification Articles from Brightsurf:

For red abalone, resisting ocean acidification starts with mom
Red abalone mothers from California's North Coast give their offspring an energy boost when they're born that helps them better withstand ocean acidification compared to their captive, farmed counterparts, according to a study from the Bodega Marine Laboratory at the University of California, Davis.

Ocean warming and acidification effects on calcareous phytoplankton communities
A new study led by researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) warns that the negative effects of rapid ocean warming on planktonic communities will be exacerbated by ocean acidification.

Sentinels of ocean acidification impacts survived Earth's last mass extinction
Two groups of tiny, delicate marine organisms, sea butterflies and sea angels, were found to be surprisingly resilient--having survived dramatic global climate change and Earth's most recent mass extinction event 66 million years ago, according to research published this week in the Proceedings of the National Academy of Sciences.

Great Barrier Reef 'glue' at risk from ocean acidification
Scientists have suspected that increasing ocean acidity would weaken and thin the structures underpinning tropical reefs.

Ocean acidification causing coral 'osteoporosis' on iconic reefs
Scientists have long suspected that ocean acidification is affecting corals' ability to build their skeletons, but it has been challenging to isolate its effect from that of simultaneous warming ocean temperatures, which also influence coral growth.

Arctic Ocean acidification worse than previously expected
Arctic Ocean acidification worse than previously expected.

Protecting bays from ocean acidification
As oceans absorb more man-made carbon dioxide from the air, a process of ocean acidification occurs that can have a negative impact on marine life.

Ocean acidification prediction now possible years in advance
CU Boulder researchers have developed a method that could enable scientists to accurately forecast ocean acidity up to five years in advance.

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.

Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.

Read More: Ocean Acidification News and Ocean Acidification Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.