Nav: Home

New NOAA research holds promise of predicting snowpack even before the snow falls

January 22, 2018

As farmers in the American West decide what, when and where to plant, and urban water managers plan for water needs in the next year, they want to know how much water their community will get from melting snow in the mountains.

This melting snow comes from snowpack, the high elevation reservoir of snow which melts in the spring and summer. Agriculture depends on snowpack for a majority of its water. Meltwater also contributes to municipal water supply; feeds rivers and streams, boosting fisheries and tourism; and conditions the landscape, helping lessen the effects of drought and wildfires.

Now, new NOAA research is showing we can predict snow levels in the mountains of the West in March some eight months in advance. This prediction can be down to the scale of a mountain range, which will improve regional water forecasts.

"In summer when people are thinking about 4th of July fireworks and barbeques, long before the first snow has fallen, our experimental prediction system tells us what the following March will be like," said Sarah Kapnick, a physical scientist at NOAA's Geophysical Fluid Dynamics Laboratory who led the research that appears online today in Proceedings of the National Academy of Sciences. "Advances in global climate models and high quality ocean, atmospheric and land observations are helping us push the frontiers of snowpack prediction."

While we have long range climate predictions that show a decline of snowpack by the end of the century and short-range rain and snow forecasts, until now there has been little information on what to expect in the next two months to two years.

Seasonal prediction will help range of water decisions

In its early stages and not yet ready to deliver operational forecasts, the research has the potential to improve a range of water-related decisions affecting warm weather water supply, wildfire risk, ecology and industries like agriculture that depend on water from melting snowpack.

NOAA's experimental predictions were accurate for much of the West except in the mountains of the southern Sierra Nevada. The infrequent and chaotic nature of precipitation-producing storms in the mountains stretching from California to Washington have long been a challenge.

"Having seasonal snow forecasts would be a tremendous boon to water managers," said Frank Gehrke, chief of the California Cooperative Snow Survey Program in the state's Department of Water Resources. "I'm not surprised prediction is running into difficulty in the Sierra Nevada but I'm hopeful the work we're doing now to improve data from this terrain will help improve prediction here."

While better prediction of water resources has always been a priority in the West, the recent prolonged drought from 2012 to 2015 and the devastating 2017 wildfires have raised the stakes. The Weather Research and Forecasting Innovation Act of 2017 passed by Congress and signed by the President also identifies improved snowpack prediction as a national priority.
-end-


NOAA Headquarters

Related Water Articles:

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
The age of water
Groundwater in Egypt's aquifers may be as much as 200,000 years old and that's important to know as officials in that country seek to increasing the use of groundwater, especially in the Eastern Desert, to mitigate growing water stress and allow for agricultural projects.
Water that never freezes
Can water reach minus 263 degrees Celsius without turning into ice?
Peanuts that do more with less water
Researchers are studying peanut varieties to find a 'water conservation' trait.
Molecular adlayer produced by dissolving water-insoluble nanographene in water
Even though nanographene is insoluble in water and organic solvents, Kumamoto University and Tokyo Institute of Technology researchers have found a way to dissolve it in water.
Water-worlds are common: Exoplanets may contain vast amounts of water
Scientists have shown that water is likely to be a major component of those exoplanets (planets orbiting other stars) which are between two to four times the size of Earth.
Artificial intelligence saves water for water users associations
A research group at the University of Cordoba has developed a model based on artificial intelligence techniques that can predict how much water each water user will use.
In desert trials, next-generation water harvester delivers fresh water from air
UC Berkeley scientists who last year built a prototype harvester to extract water from the air using only the power of the sun have scaled up the device to see how much water they can capture in arid conditions in Arizona.
More Water News and Water Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.