Nav: Home

Rutgers scientists discover 'Legos of life'

January 22, 2018

Rutgers scientists have found the "Legos of life" - four core chemical structures that can be stacked together to build the myriad proteins inside every organism - after smashing and dissecting nearly 10,000 proteins to understand their component parts.

The four building blocks make energy available for humans and all other living organisms, according to a study published online today in the Proceedings of the National Academy of Sciences.

The study's findings could lead to applications of these stackable, organic building blocks for biomedical engineering and therapeutic proteins and the development of safer, more efficient industrial and energy catalysts - proteins and enzymes that, like tireless robots, can repeatedly carry out chemical reactions and transfer energy to perform tasks.

"Understanding these parts and how they are connected to each other within the existing proteins could help us understand how to design new catalysts that could potentially split water, fix nitrogen or do other things that are really important for society," said Paul G. Falkowski, study co-author and a distinguished professor who leads the Environmental Biophysics and Molecular Ecology Laboratory at Rutgers University-New Brunswick.

The scientists' research was done on computers, using data on the 3D atomic structures of 9,500 proteins in the RCSB Protein Data Bank based at Rutgers, a rich source of information about how proteins work and evolve.

"We don't have a fossil record of what proteins looked like 4 billion years ago, so we have to take what we have today and start walking backwards, trying to imagine what these proteins looked like," said Vikas Nanda, senior author of the study and an associate professor in the Department of Biochemistry and Molecular Biology at Rutgers' Robert Wood Johnson Medical School, within Rutgers Biomedical and Health Sciences. "The study is the first time we've been able to take something with thousands of amino acids and break it down into reasonable chunks that could have had primordial origins."

The identification of four fundamental building blocks for all proteins is just a beginning. Nanda said future research may discover five or 10 more building blocks that serve as biological Legos.

"Now we need to understand how to put these parts together to make more interesting functional molecules," he said. "That's the next grand challenge."
-end-
The study's lead author is Hagai Raanana, a post-doctoral associate in the Environmental Biophysics and Molecular Ecology Program. Co-authors include Douglas H. Pike, a doctoral student at the Rutgers Institute for Quantitative Biomedicine, and Eli K. Moore, a post-doctoral associate in the Environmental Biophysics and Molecular Ecology Program.

Rutgers University

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".