Nav: Home

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018

Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers from Penn State optimized a new method to create the synthetic neurons, which they used to investigate a core enzyme involved in the synthesis of purines -- a component of DNA that is involved in many other cellular and metabolic processes -- and how the enzyme might change during infection by herpes simplex virus. An early version of the paper describing the enzyme appears online in Jan. 2018 in the Journal of Neurochemistry, and a paper describing the neuron-like cells appeared in the Dec. 2017 issue of the Journal of Virology.

"These newly developed neuron-like cells allowed us to investigate purine formation in a specialized cell type for the first time," said Moriah Szpara, assistant professor of biochemistry and molecular biology at Penn State and senior author of both papers. "We were interested in neurons because they require a lot of energy and therefore need to produce purines efficiently. We were also curious how the synthesis process might be affected by infection with herpes simplex virus, an energetically demanding virus that takes up residence in neurons."

When demand for purines is high in a cell, a complex composed of many enzymes called the purinosome forms to enable faster production of these important chemicals. The researchers investigated an enzyme called FGAMS, a core component of the purinosome. To better understand the role of FGAMS in purine production, they looked at where and how much of the enzyme is expressed in rodent brain slices, rodent neurons, human non-neuronal cells, and the human neuron-like cells cultivated with the new technique.

"Studying human neurons has been challenging because we haven't had a good laboratory model to study them," said Colleen Mangold, a postdoctoral researcher at Penn State and an author of both studies. "We can use neurons from rodents or chick embryos, but they don't give us the same information as human cells. Most studies require large numbers of cells, so we developed a method to take a commonly available cell line and shape it into cells that look and act like neurons. This new method will allow us to start asking the backlog of questions we have about neurons, like how purines are synthesized in the brain."

In the neuron-like cells and in rodent neurons and brain slices, FGAMS was expressed in a number of locations throughout the neuron, including near mitochondria and microtubules. Because FGAMS is also found near these structures in non-neuronal cells, the researchers suspect that purinosome formation may be conserved across different cell types.

The researchers also investigated the effect of infection with herpes simplex virus 1 (HSV1) on the purine biosynthesis protein FGAMS both in neurons and in non-neuronal cells. HSV1 initially infects an individual at the skin surface and proceeds to set up a lifelong infection in neurons that cannot be cleared by the immune system. Because purines may play a role in the replication of HSV1, the high metabolic load of the virus might deplete purine resources and affect purine synthesis.

"Infection with HSV1 induced clustering of FGAMS in the non-neuronal cells, which model the skin phase of infection, while FGAMS appeared to be constantly clustered and activated in neuronal cells," said Stephen Benkovic, Evan Pugh Professor of Chemistry and Holder of the Eberly Family Chair in Chemistry at Penn State and an author of the purine formation paper. "We suspect that the purinosome is assembled only on an as-needed basis in non-neuronal cells, but that high energetic demands in neurons may necessitate the purinosome being present all of the time."

"Viruses like HSV1 survive by establishing a lifelong infection in neurons," said Szpara, "and there is growing evidence suggesting links between chronic viral infections and late-life neurocognitive diseases. We are continuing to investigate the potential connections between the burdens of viral infection and the high metabolic demands of neurons to see if there are avenues to prevent damage and improve long-term neuronal health."

Because the results from the neuron-like cells mirror those in the rodent brain slices and neurons, this study highlights the utility of these cells as a new model system for studying neurons and how viruses affect them.

"These neuron-like cells are easy to grow in great numbers and will allow us to capture some of the nuance we missed when studying viruses in non-neuronal cells," said Mackenzie Shipley, graduate student at Penn State and first author of the synthetic neuron paper. "While these cells can be used to ask a variety of questions about neurons, they also provide a new avenue to study how neurons respond to neurotropic viruses, like HSV, HIV, rabies, West Nile, Zika, and Chikungunya."
-end-
In addition to Szpara, Mangold, and Benkovic, the research team on the project exploring the formation of purines includes Pamela Yao of the National Institutes of Health (NIH) National Institute of Aging, and Mei Du and Willard Freeman of the University of Oklahoma Health Sciences Center. This work is funded in part by NIH, the American Heart Association, the NIH National Institute of Aging, the Huck Institutes of the Life Sciences at Penn State, and the Pennsylvania Department of Health Commonwealth Universal Research Enhancement (CURE) program.

In addition to Szpara, Mangold, and Shipley, the research team on the project describing the neuron-like cells includes Chad Kuny, postdoctoral researcher at Penn State. This work is funded by the NIH National Institute of Allergy and Infectious Diseases (NAID) Virus Pathogens Resource (ViPR) Bioinformatics Resource Center, and is supported by the Huck Institutes of the Life Sciences.

Penn State

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...