Nav: Home

Johns Hopkins scientist proposes new limit on the definition of a planet

January 22, 2018

Pluto hogs the spotlight in the continuing scientific debate over what is and what is not a planet, but a less conspicuous argument rages on about the planetary status of massive objects outside our solar system. The dispute is not just about semantics, as it is closely related to how giant planets like Jupiter form.

Johns Hopkins University astrophysicist Kevin Schlaufman aims to settle the dispute.

In a paper just published by the Astrophysical Journal, Schlaufman has set the upper boundary of planet mass between four and 10 times the mass of the planet Jupiter. (The paper is also archived here: https://arxiv.org/abs/1801.06185.)

Schlaufman, an assistant professor in the university's Department of Physics and Astronomy, says setting a limit is possible now mainly due to improvements in the technology and techniques of astronomical observation. The advancements have made it possible to discover many more planetary systems outside our solar system and therefore possible to see robust patterns that lead to new revelations.

"While we think we know how planets form in a big-picture sense, there's still a lot of detail we need to fill in," Schlaufman said. "An upper boundary on the masses of planets is one of the most prominent details that was missing."

The conclusions in the new paper are based on observations of 146 solar systems, Schlaufman said. Almost all the data he used was measured in a uniform way, he said. The data are more consistent from one solar system to the next, and so more reliable.

Defining a planet, distinguishing it from other celestial objects, is a bit like narrowing down a list of criminal suspects. It's one thing to know you're looking for someone who is taller than 5-foot-8, it's another to know your suspect is between 5-foot-8 and 5-foot-10.

In this instance, investigators want to distinguish between two suspects: a giant planet and a celestial object called a brown dwarf. Brown dwarfs are more massive than planets, but less massive than the smallest stars. They are thought to form as stars do.

For decades brown dwarfs have posed a problem for scientists: how to distinguish low-mass brown dwarfs from especially massive planets? Mass alone isn't enough to tell the difference bzween the two, Schlaufman said. Some other property was needed to draw the line.

In Schlaufman's new argument, the missing property is the chemical makeup of a solar system's own sun. He says you can know your suspect, a planet, not just by itssize, but also by the company it keeps. Giant planets such as Jupiter are almost always found orbiting stars that have more iron than our sun. Brown dwarfs are not so discriminating.

That's where his argument engages the idea of planet formation. Planets like Jupiter are formed from the bottom-up by first building-up a rocky core that is subsequently enshrouded in a massive gaseous envelope. It stands to reason that they would be found near stars heavy with elements that make rocks, as those elements provide the seed material for planet formation. Not so with brown dwarfs.

Brown dwarfs and stars form from the top-down as clouds of gas collapse under their own weight.

Schlaufman's idea was to find the mass at which objects stop caring about the composition of the star they orbit. He found that objects more massive than about 10 times the mass of Jupiter do not prefer stars with lots of elements that make rocks and therefore are unlikely to form like planets.

For that reason, and while it's possible that new data could change things, he has proposed that objects in excess of 10 Jupiter mass should be considered brown dwarfs, not planets.
-end-


Johns Hopkins University

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
More Solar System News and Solar System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...