New applications for encapsulated nanoparticles with promising properties

January 22, 2019

Nanotechnology and nanoscience are disciplines in which minute molecular structures with special physical and chemical properties are designed, manufactured and studied. One of the types of particles that are studied in these disciplines are quantum dots; they are semiconductor nanocrystals the size of which ranges between 2 nm and 10 nm and which have excellent optical and electronic properties. Worthy of mention is the fact that they emit light in different colours depending on their size, in other words, "the emission wavelength is varied just by varying the size of the nanocrystal, without modifying its composition," explained Alicia de San Luis, a POLYMAT researcher and author of this work.

The properties of quantum dots render them potentially useful for a range of applications, such as detection in biomedicine, the production of solar panels and LEDs, their use as sensors of volatile organic compounds (VOCs), and as photosensitizers. Yet, "their drawbacks also need to be taken into consideration: they are difficult to handle owing to their small size, and are toxic, given that the quantum dots of higher quality mostly consist of heavy metals," pointed out the researcher.

To get the most out of the excellent optical properties of these nanoparticles, while not forgetting the toxicity problems they have, at the UPV/EHU's Polymat institute of research they have managed to efficiently encapsulate commercial quantum dots into polymer particles dispersed in water while maintaining the fluorescence of the quantum dots over long periods of time. "The main aim was to encapsulate the quantum dots into slightly larger polymer particles to protect them and, at the same time, be able to handle them without them losing their properties," as the author of the research pointed out. "We have implemented a simple method yielding good results: polymer particles with fluorescence stable over a minimum of 9 months," she added.

Different combinations and applications

Having achieved the first aim, "the second step was to encapsulate combinations of quantum dots of varying sizes to create a bar code that could be used for multiple detection in biological systems," she explained. That way they managed to control the fluorescence of these combinations, since by using quantum dots that emit at different wavelengths, "their signals can be detected simultaneously without one being superimposed on another one". This could be useful for biomedical detection as there is a possibility of modifying the surface of the polymer particle with different analytes (or different antibodies or antigens). In the researcher's view, "it is a pretty powerful, straightforward, fast detection technique. Most labs have a fluorometer and, what is more, one would not have to wait several days to process the sample".

They also explored the combining of quantum dots with other inorganic nanoparticles (CeO2) by co-encapsulating them into the same polymer particles. In this study they were able to see "an increase in the emission of fluorescence during the time they were exposed to sunlight".

Finally, in the research they tackled the possible applicability of a range of synthesised combinations, such as optical and electrical sensors of volatile organic compounds (VOCs) by producing nanofibres and subsequently putting them in contact with VOCs. This part of the research is being carried out in collaboration with Tecnalia. "In this case we are working on fluorescence as well as on conductivity measurements of the nanofibres," explained Alicia de San Luis.
-end-
Additional information

This research was conducted by Alicia de San Luis-González (Valladolid, 1988), as part of her PhD thesis at the UPV/EHU's Polymat Institute of Research. The PhD thesis, entitled Nanostructured polymeric aqueous dispersions containing quantum dots, was supervised by Jose Ramon Leiza, professor of the UPV/EHU's Faculty of Chemistry and director of Polymat, and by María Paulis, tenured lecturer at the UPV/EHU's Faculty of Chemistry. In the final part of the thesis work is being conducted right now in collaboration with Tecnalia in the section dealing with VOCs.

Bibliographical reference

Alicia De San Luis, Ziortza Aguirreurreta, Leticia M. Pardo, Ana Perez ?Marquez, Jon Maudes, Nieves Murillo, María Paulis, Jose Ramon Leiza.

PS/PMMA?CdSe/ZnS Quantum Dots Hybrid Nanofibers for VOCs Sensors

Israel Journal of Chemistry, 58, (8). (2018)

DOI: 10.1002/ijch.201800038

University of the Basque Country

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.