Nav: Home

New insights into magnetic quantum effects in solids

January 22, 2019

Atoms and molecules in crystalline solids are arranged in regular three-dimensional lattices. The atoms interact with each other via various forces, finally reaching a state of minimum energy. Near absolute zero, the lattice oscillations freeze, so that interactions between electron spins dominate. A particularly interesting case occurs when the spins cannot all align at the same time to reach a state of lowest energy. This results in a frustrated system in which the spins are almost completely disordered and are therefore referred to as a spin liquid.

Cubic crystal structure

One of the leading models for studying 3D frustrated quantum magnets is the Heisenberg model on a pyrochlore lattice - a simple cubic crystal structure (see illustration). Nevertheless, it has so far been extremely difficult to derive practical predictions, i.e. for specific materials and temperatures, from this theoretical model.

Different spin values

Teams from Germany, Japan, Canada, and India have now jointly conducted systematic investigations of this model with the aid of a new theoretical method and solved several of these difficulties. It is possible with this new method to vary the spin value of the lattice atoms as well as the temperature and other interaction parameters, and to calculate the parameter ranges in which novel magnetic quantum effects occur. The calculations were carried out at the Leibniz Supercomputing Centre (LRZ) in Munich.

Quantum effects only for small spins

"We were able to show that quantum physical effects surprisingly only occur over very limited parameter ranges", explains theoretical physicist Prof. Johannes Reuther from the HZB, co-author of the study. These quantum effects are most pronounced at the smallest possible spin (spin value ½). However, spin systems in the crystal structure investigated by the teams already behave almost completely like classical physical systems at spin values of 1.5 and above.

The work published deepens our understanding of solids and contributes to the systematic advancement of the search for 3D spin fluids in quantum materials.
The study is published Open Access in Physical Review X (2019): Quantum and Classical Phases of the Pyrochlore Heisenberg Model with Competing Interactions. Yasir Iqbal, Tobias Müller, Pratyay Ghosh, Michel J. P. Gingras, Harald O. Jeschke, Stephan Rachel, Johannes Reuther, and Ronny Thomale

Helmholtz-Zentrum Berlin für Materialien und Energie

Related Atoms Articles:

Stenciling with atoms in 2-dimensional materials possible
The possibilities for the new field of two-dimensional, one-atomic-layer-thick materials, including but not limited to graphene, appear almost limitless.
Microprocessors based on a layer of just 3 atoms
Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics.
Super sensitive devices work on recycling atoms
Next-generation sensors to be used in fields as diverse as mineral exploration and climate change will be turbo boosted thanks to University of Queensland and University of Sussex research.
Breakthrough with a chain of gold atoms
The precise control of electron transport in microelectronics makes complex logic circuits possible that are in daily use in smartphones and laptops.
Sorting machine for atoms
Physicists at the University of Bonn have cleared a further hurdle on the path to creating quantum computers: in a recent study, they present a method with which they can very quickly and precisely sort large numbers of atoms.
Boron atoms stretch out, gain new powers
Ribbons and single-atom chains of boron would have unique physical and electronic properties, according to theoretical physicists at Rice University.
ANU demonstrates 'ghost imaging' with atoms
A team of physicists at the Australian National University have used a technique known as 'ghost imaging' to create an image of an object from atoms that never interact with it.
'Weighing' atoms with electrons
The chemical properties of atoms depend on the number of protons in their nuclei, placing them into the periodic table.
New approach to determining how atoms are arranged in materials
Researchers have developed a novel approach to characterizing how atoms are arranged in materials, using Bayesian statistical methods to glean new insights into the structure of materials.
Magnetic atoms arranged in neat rows
Physicists at Friedrich-Alexander Universität Erlangen-Nürnberg and the Vienna University of Technology have successfully created one-dimensional magnetic atom chains for the first time.

Related Atoms Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...