Nav: Home

Temple researchers show synthetic flaxseed derivative helps heart function in septic mice

January 22, 2019

(Philadelphia, PA) - Sepsis is a life-threatening systemic inflammatory condition that develops in response to infection. One of its major complications is cardiovascular dysfunction, in which deterioration of the heart muscle, driven by decreased energy production resulting from reduced oxygen and nutrient supplies, frequently ends in organ failure. Now, in a new study published online in the Journal of Molecular and Cellular Cardiology, scientists at the Lewis Katz School of Medicine at Temple University (LKSOM) are the first to show that a novel synthetic compound derived from flaxseed, a whole grain celebrated for its potent antioxidant properties, can reverse this deterioration and improve heart function in mice with sepsis.

"Inflammation is an important problem in sepsis, but equally important is maintaining energy production in the heart," explained Konstantinos Drosatos, PhD, senior investigator on the new study and Assistant Professor of Pharmacology and Assistant Professor in the Center for Translational Medicine and the Center for Metabolic Disease Research at LKSOM. "Cardiovascular complications increase sepsis mortality by 80 to 90 percent. One reason for this is that septic cardiac dysfunction increases oxidative stress, which damages mitochondrial DNA and proteins, so we wanted to know whether applying an antioxidant to scavenge reactive oxygen species (ROS) would improve heart function in sepsis."

To answer this question, Dr. Drosatos and colleagues examined the effects of a compound known as LGM2605, a synthetic version of the antioxidant lignan secoisolariciresinol diglucoside (SDG) found in flaxseed. LGM2605 was developed by Melpo Christofidou-Solomidou, PhD, senior collaborator and author on the new study and Research Professor of Medicine in the Pulmonary, Allergy and Critical Care Division of the Department of Medicine at the Perelman School of Medicine at the University of Pennsylvania.

The researchers administered LGM2605 to septic mice and then analyzed cardiac tissues for various changes, including alterations in ROS levels and in abundance of mitochondria, the organelles responsible for the vast majority of energy production in cells. Treatment with LGM2605 six hours after the onset of sepsis significantly reduced ROS accumulation in heart cells and restored energy production. Mechanistic studies revealed beneficial impacts on mitochondria, with LGM2605 improving mitochondrial abundance and function. Moreover, the researchers found that daily administration of LGM2605, in combination with an antibiotic, led to greater reductions in mortality from sepsis compared with daily administration of an antibiotic alone.

The new work adds to the idea that restoring energy production in the heart is critical to overcoming septic cardiac dysfunction and improving survival in sepsis, a concept that Dr. Drosatos has been exploring in the past decade. In previous work, his team elucidated the mechanism underlying energy loss in septic cardiac cells.

"An important next step in our work is to explore whether LGM2605 and other substances that stimulate energy production in the cells are candidates as novel interventions for sepsis in human patients," Dr. Drosatos said. "We also want to see if this metabolic component of sepsis, involving mitochondrial dysfunction and energy deficiency, affects other cell types in the body, not just heart cells."
The new study was performed primarily by Dimitra Kokkinaki, a visiting graduate student from the University of Crete, Greece, and Matthew Hoffman, a graduate student of LKSOM's MD-PhD program. Other investigators contributing to the work include Charikleia Kalliora, Center for Translational Medicine and Department of Pharmacology, LKSOM, and Faculty of Medicine, University of Crete, Greece; Ioannis D. Kyriazis, Anna Maria Lucchese, Santhanam Shanmughapriya, Dhanendra Tomar, Muniswamy Madesh, and Walter J. Koch, Center for Translational Medicine and Department of Pharmacology, LKSOM; Jennifer Maning and Anastasios Lymperopoulos, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida; Joon Young Park, Cardiovascular Research Center, LKSOM; and Hong Wang and Xiao-Feng Yang, Cardiovascular Research Center and Center for Metabolic Disease Research, Department of Pharmacology, LKSOM.

The research was supported in part by National Institutes of Health grants HL112853, HL130218, HL138268, P01HL091799, and 1P42ES023720 and by funding from the W.W. Smith Charitable Trust and American Heart Association.

About Temple Health

Temple University Health System (TUHS) is a $2.1 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with the Lewis Katz School of Medicine at Temple University, and Temple University Physicians, which is Temple Health's physician practice plan comprised of more than 500 full-time and part-time academic physicians in 20 clinical departments.

The Lewis Katz School of Medicine (LKSOM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates more than 800 medical students and approximately 240 graduate students. Based on its level of funding from the National Institutes of Health, the Katz School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, LKSOM is among the top 10 most applied-to medical schools in the nation.

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System (TUHS) and by the Katz School of Medicine. TUHS neither provides nor controls the provision of health care. All health care is provided by its member organizations or independent health care providers affiliated with TUHS member organizations. Each TUHS member organization is owned and operated pursuant to its governing documents.


Jennifer Reardon

Follow us on Twitter @TempleMedNews

Temple University Health System

Related Sepsis Articles:

Readily available drug cocktail can help prevent sepsis shock and death
Even in advanced medical settings, sepsis is still very dangerous and accounts for over 400,000 deaths annually in the US alone.
A rusty and sweet side of sepsis
A research team led by Miguel Soares at the Instituto Gulbenkian de Ciência (IGC) in Portugal discovered an unsuspected mechanism that is protective against sepsis.
New pediatric protocol reduces missed sepsis diagnoses by 76 percent
An electronic sepsis alert using a combination of vital signs, risk factors and physician judgment to identify children in a pediatric emergency department with severe sepsis reduced missed diagnoses by 76 percent.
Machine learning may help in early identification of severe sepsis
A machine-learning algorithm has the capability to identify hospitalized patients at risk for severe sepsis and septic shock using data from electronic health records (EHRs), according to a study presented at the 2017 American Thoracic Society International Conference.
Faster is better when it comes to sepsis care
An analysis covering nearly 50,000 patients from 149 New York hospitals is the first to offer scientific evidence that a controversial early sepsis care regulation worked.
Prompt sepsis treatment less likely when ERs overcrowded
According to a new study, patients with sepsis, a life-threatening complication of an infection, had delays approaching one hour in being given antibiotics when seen in emergency rooms that were overcrowded.
New test to rapidly diagnose sepsis
Researchers have developed a test that can rapidly and reliably diagnose sepsis, a potentially life-threatening complication of bacterial infections.
Children who survive sepsis often experience lingering effects
Survival rates have risen dramatically in recent years among children who develop sepsis, a severe, life-threatening immune reaction to an infection somewhere in the body.
Recognize sepsis as a separate cause of illness and death
Sepsis should be recognized as a separate cause of illness and death around the world.
Simple measures cut sepsis deaths nearly in half
Sepsis, also called blood poisoning, is a common affliction that can affect people of all ages.

Related Sepsis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...