Nav: Home

Exercise before surgery can protect both muscle and nerves, study suggests

January 22, 2019

Exercise can protect both muscle and nerves from damage caused by the restoration of blood flow after injury or surgery, new research from the University of Virginia School of Medicine shows.

UVA's Zhen Yan, PhD, a top expert on the cellular benefits of exercise, and his team are working to better understand how the body is damaged by the restoration of blood flow - known as ischemia reperfusion injury - and to find ways to improve outcomes for people who suffer it, including surgery and trauma patients and soldiers injured on the battlefield. Their new finding shows that pre-injury exercise has substantial benefits in terms of preserving both muscle and nerve.

"Exercise-trained mice had a much better recovery, evidenced by less nerve damage, less muscle damage and less reduction of contractile function [in the muscle] immediately after injury and days later," explained Yan, the director of the Center for Skeletal Muscle Research at UVA's Robert M. Berne Cardiovascular Research Center.

The Danger of Ischemia Reperfusion Injury

Because of the damage caused by reperfusion injury, doctors now seek to limit the amount of time blood flow is cut off to no more than 90 minutes. "There are some situations where you have to stop bleeding to save life," Yan said. "The way we often do that is by putting on a tourniquet, to completely stop the circulation until the patient can be taken to the emergency room. But there's an issue there: We cannot block it too long. The tissues will be dead. We have to restore the blood flow at some point, but it will cause reperfusion injury. There is a conundrum."

In his latest research, Yan and his team used a "reporter gene" he developed called the MitoTimer to understand the effects of reperfusion injury on muscle and nerves. The reporter gene allowed them to measure the amount of "oxidative stress" to the cells' powerplants, mitochondria, when blood flow was restored.

They found that pre-injury exercise clearly reduced the damage to both muscle and nerve, but it did not significantly reduce the amount of oxidative stress. "We know exercise made the muscle and nerve tougher," Yan said. "The protection is very clear."

While the mechanism for that protection is not yet understood, Yan's previous research has shed light on what happens to muscle cells when blood flow is restored. He likens it to wires being disconnected from a circuit board. He's even identified a compound that, in mice, helps protect the mitochondria in those circuit boards. "With this treatment, we found the circuit board, a structure called neuromuscular junction where nerve is physically connected with muscle for control of its contraction, was preserved," he said. "The wires remained connected. The function is normal. Therefore, recovery is much faster." This drug could potentially prevent nerve damage caused by the restoration of blood flow and speed patients' recovery. (It is clear, however, that exercise training achieves this through a different mechanism.)

More work will need to be done before such a drug could be used in humans, but Yan thinks the discovery holds great promise. He envisions that the drug could be of tremendous use to the military, for example. "On the battlefield, a simple thing to do is to put a bandage around the limb to block the circulation, to block the bleeding," he said. "But at a certain point, you have to re-establish circulation, and our approach could offer a way to minimize the collateral damage and get better outcomes."

Yan, of UVA's Division of Cardiovascular Medicine, plans to continue his investigation into both the drug and reperfusion injury in general as part of his larger studies into how exercise benefits our cells and human health.
-end-
Exercise Findings Published

Yan and his colleagues have published their latest findings in the Journal of Applied Physiology. The research team consisted of Rebecca J. Wilson, Joshua C. Drake, Di Cui, Matthew L. Ritger, Yuntian Guan, Jarrod A. Call, Mei Zhang, Lucia M. Leitner, Axel Gödecke and Yan.

The work was supported by the National Institutes of Health, grants R01-AR050429 and T32 HL007284-38, and the American Heart Association, grant 114PRE20380254.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

University of Virginia Health System

Related Blood Flow Articles:

Stuttering linked to reduced blood flow in area of brain associated with language
A study led by researchers at Children's Hospital Los Angeles demonstrates that regional cerebral blood flow is reduced in the Broca's area -- the region in the frontal lobe of the brain linked to speech production -- in persons who stutter.
New study shows marijuana users have low blood flow to the brain
Published in the Journal of Alzheimer's Disease, researchers using single photon emission computed tomography, a sophisticated imaging study that evaluates blood flow and activity patterns, demonstrated abnormally low blood flow in virtually every area of the brain studies in nearly 1,000 marijuana users compared to healthy controls, including areas known to be affected by Alzheimer's pathology such as the hippocampus.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Studying blood flow dynamics to identify the heart of vessel failure
New research from a fluid mechanics team in Greece reveals how blood flow dynamics within blood vessels may influence where plaques develop or rupture this week in Physics of Fluids.
Restoring leg blood flow is better option than exercise for PAD patients
Procedures to restore blood flow to the affected legs of peripheral artery disease (PAD) patients stopped progression of the scarring associated with the disease.
Abnormally low blood flow indicates damage to NFL players' brains
The discovery of brain pathology through autopsy in former National Football League (NFL) players called chronic traumatic encephalopathy (CTE) has raised substantial concern among players, medical professionals, and the general public about the impact of repetitive head trauma.
Blood flow measurements in microfluidic devices fabricated by a micromilling technique
The researchers show the ability of a micromilling machine to manufacture microchannels down to 30 μm and also the ability of a microfluidic device to perform partial separation of red blood cells from plasma.
Low blood flow in back of brain increases risk of recurrent stroke
Patients who have had a stroke in the back of the brain are at greater risk of having another within two years if blood flow to the region is diminished, according to results of a multicenter study led by researchers at the University of Illinois at Chicago.
Reduced blood flow seen in brain after clinical recovery of acute concussion
Some athletes who experience sports-related concussions have reduced blood flow in parts of their brains even after clinical recovery, according to new research.
Researchers identify mechanism that impairs blood flow with aging
With the world's elderly population expected to double by 2050, understanding how aging affects the body is an important focus for researchers globally.

Related Blood Flow Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...