Nav: Home

Long-read DNA analysis can give rise to errors, experts warn

January 22, 2019

Advanced technologies that read long strings of DNA can produce flawed data that could affect genetic studies, research suggests.

New methods that can read lengthy sections of genetic material - categorised by a series of letters - are up to 99.8 per cent accurate, however, in a genome of more than 3 billion letters, this may equate to millions of mistakes in the results.

These errors may falsely indicate that an individual has a genetic difference that heightens their risk of a particular disease.

Researchers say data produced by these technologies should be interpreted with caution, as it may create problems for analysing genetic information from people and animals.

Previously, genetic sequencing technologies were focused on reading short strings of DNA. These sequences would be patched together, which is time consuming and labour intensive.

This approach is useful for reading individual genes but is inappropriate for entire organisms.

Experts from the University of Edinburgh's Roslin Institute examined three recent studies reporting human genome sequences from long-read technologies. The data contained thousands of errors even after corrective software was used, they found.

Such mistakes could have major implications if these technologies are used in clinical studies to diagnose patients, the team suggests.

The findings are reported in a commentary in Nature Biotechnology. The Roslin Institute receives strategic funding from the Biotechnology and Biological Sciences Research Council.

Professor Mick Watson, of the University of Edinburgh's Roslin Institute, said: "Long-read technologies are incredibly powerful but it is clear that we can't rely on software tools to correct errors in the data - some hands-on expertise may still be required. This is important as we increasingly use genomic technologies to understand the world around us."
-end-


University of Edinburgh

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...