Nav: Home

Good neighbors

January 22, 2019

In the animal kingdom, food access is among the biggest drivers of habitat preference. It influences, among other things, how animals interact, where they roam and the amount of energy they expend to maintain their access to food. But how do different members of ecologically similar species manage to live close to each other?

This question was on the mind of UC Santa Barbara postdoctoral scholar Jacob Eurich as he studied territorial damselfish in Kimbe Bay, Papua New Guinea. Located within the Coral Triangle of the Indo-Pacific region, which is recognized for the greatest richness of marine life in the world, the coral reefs in the area are home to a variety of damselfish. This includes seven species that inhabit their own particular spaces, in some cases within mere meters of one another.

"Previously, scientists thought that all territorial damselfishes were herbivorous, farm algae and basically do the same thing ecologically on reefs," explained Eurich, who conducted this research while at James Cook University in Australia. "Damselfish" is a very broad category, he added, with members such as clownfishes and the Californian garibaldi in the same family. The species of damselfish that are the subject of this research are the tropical territorial types, known to cultivate and protect algal beds on coral reefs.

In research published in the science journal Marine Biology, Eurich sought to understand how neighboring communities of these fish -- which live in an ecological community of intense competition for resources -- manage to thrive.

"We set out to understand how they live so close to one another without directly competing, and why," he said.

The answer came after an in-depth look at the fishes' diets using stable isotope analysis, which detects certain types of elements in their muscle tissues and links them to potential food items.

"It is based on the principle, 'you are what you eat,'" Eurich explained. Rather than getting a snapshot of an animal's diet by looking at its stomach contents, stable isotope analysis provides a long-term picture of what the animal consumes on a regular basis because the food is incorporated into the animal's tissue.

The result? These farming fish are not exclusively farmers, nor are they exclusively vegetarian.

"The analysis proved that in fact not all territorial damselfish are herbivorous and we found evidence of planktivory, quite the opposite feeding regime," Eurich said. Further, he added, these species had previously only been known to eat things off the reef. "We found evidence of two species foraging for food that drift by in the water column."

These findings are significant on several levels. They indicate that certain broad ecological categorizations -- such as the classification of territorial damselfish as herbivores -- may not adequately serve some species, or the scientists and conservationists that study them.

"I think it is a cautionary flag to scientists in all ecological-related fields to be careful when generalizing groups of similar species," Eurich said. "Each species is likely partitioning a resource and if it doesn't look like they are, there is a chance a technology with a finer resolution is needed to detect differences."

Also, the study demonstrates an example of adaptation in areas of high competition for resources.

"An animal can't spend all of their time and energy fighting a neighbor," Eurich said. "In this study we showed some of the species switched diets to reduce competition."

As climate change and subsequent ocean acidification and coral bleaching continue to affect life on the reef, territorial damselfish will remain one species to watch as they adapt to shifting conditions. So far they seem to be successful, in fact they are regarded "winners" of coral bleaching.

"Where most species die off due to the coral habitat loss, these algae-farmers actually increase in abundance," said Eurich, who is now based in the McCauley Lab at UC Santa Barbara's Marine Science Institute. "The study here shows how many of these species may coexist in the future. I think it is important to look at the competition and coexistence of species that may be the most abundant on future reefs."
-end-


University of California - Santa Barbara

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...