Sticky antibiotic provides glue for successful treatment

January 22, 2020

Researchers have found how an antibiotic used to treat a debilitating gut infection stays put inside the body giving it time to effectively treat the problem, a discovery that will pave the way for the development of more effective antibiotic treatments to fight superbugs.

PE (pseudomembranous colitis) is a debilitating inflammation of the colon caused by infection with the microbe Clostridium difficile (and sometimes Staphylococcus aureus). The sugar- or carbohydrate-containing antibiotic known as vancomycin is taken by mouth to kill the infecting microbe.

To be effective, vancomycin needs to stay in the GI tract (gut) close to where it is needed and not be diluted away or lost through the lining of the gut and into the bloodstream. A multi-disciplinary team of scientists at the Universities of Nottingham and Leeds have now shown this 'staying put' mechanism is precisely what happens and that it can occur in an unexpected way.

Forming a formidable barrier

The research, published today in Scientific Reports shows that protein-carbohydrate molecules of the gut called mucins provide a formidable barrier helping to prevent the drug escaping using a unique mechanism of formation of large molecular complexes or clumps. The antibiotic and mucins join together to form a mucoadhesive complex, likely trapping the antibiotic within large complexes. It is the trapped vancomycin which the scientists believe may lead to delayed transit of the antibiotic leading to prolonged exposure of the antibiotic to the infectious C. difficile.

Dr Mary Phillips-Jones, Associate Professor in Polymer & Microbial Biophysics at the University of Nottingham led the research, she said: "Vancomycin is a precious 'last-line' antibiotic in the clinician's arsenal of therapies to fight several important pathogens including MRSA, pneumonia, as well as C. difficile. The clumping effect with gut mucins revealed in our study not only gives new information about what may happen when the antibiotic is given orally, but might also provide new insights into its behaviour when infused into patients suffering from other life-threatening infections."

The findings also fit with other studies which show that oral vancomycin produces high levels of vancomycin resistance amongst some gut bacteria (VRE), contributing to the generation of antimicrobial resistance (a serious concern); the clumping/ complexation phenomenon may therefore provide the first explanation of a mechanism by which this VRE generation occurs. But the benefits of taking oral vancomycin at the right time and when appropriate still outweigh any negative generation of antimicrobial resistance, and the study highlights that it is wise to take vancomycin when your GP advises it is good to do so.

Dr Stephen Harding, Professor of Applied Biochemistry at the University of Nottingham added: "The antibiotic vancomycin is a truly remarkable molecule - a drug with its own mucoadhesive or sticky property which slows its transit through the gut right down giving maximum therapeutic effect and minimizing unused vancomycin being returned to the environment. If scientists are going to win the fight against anti-microbial resistance, joint institutional and interdisciplinary approaches like this successful one are going to prove crucial."
-end-


University of Nottingham

Related Antibiotic Articles from Brightsurf:

Pollution linked to antibiotic resistance
Antibiotic resistance is an increasing health problem, but new research suggests it is not only caused by the overuse of antibiotics.

Antibiotic resistance and the need for personalized treatments
Scientists have discovered that the microbiota of each individual determines the maintenance of antibiotic resistant bacteria in the gut: whereas in some individuals resistant bacteria are quickly eliminated, in others they are not.

Artificial intelligence yields new antibiotic
Using a machine-learning algorithm, MIT researchers have identified a powerful new antibiotic compound.

From cancer medication to antibiotic
Antibiotic-resistant bacteria are increasingly the source of deadly infections. A team of scientists from the Technical University of Munich (TUM) and the Helmholtz Center for Infection Research (HZI) in Braunschweig have now modified an approved cancer drug to develop an active agent against multidrug-resistant pathogens.

Up to two-fifths of antibiotic prescriptions in the US could be inappropriate
As much as two fifths (43%) of antibiotic prescriptions in the United States could be inappropriate, warn researchers in a study published by The BMJ today.

New understanding of antibiotic synthesis
Researchers at McGill University's Faculty of Medicine have made important strides in understanding the functioning of enzymes that play an integral role in the production of antibiotics and other therapeutics.

Cause of antibiotic resistance identified
Bacteria can change form in human body, hiding the cell wall inside themselves to avoid detection.

Cannabidiol is a powerful new antibiotic
New research has found that Cannnabidiol is active against Gram-positive bacteria, including those responsible for many serious infections (such as Staphyloccocus aureus and Streptococcus pneumoniae), with potency similar to that of established antibiotics such as vancomycin or daptomycin.

New approaches cut inappropriate antibiotic use by over 30%
A UC Davis study of nine emergency departments and urgent care centers in California and Colorado found educating physicians and patients about safe antibiotic use can cut overuse by one-third.

How certain antibiotic combinations could defeat 'superbugs'
In hospitalized patients with bacterial infections, heteroresistance is more widespread than previously appreciated.

Read More: Antibiotic News and Antibiotic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.