Locomotor engine in the spinal cord revealed

January 22, 2020

Researchers at Karolinska Institutet in Sweden have revealed a new principle of organisation which explains how locomotion is coordinated in vertebrates akin to an engine with three gears. The results are published in the scientific journal Neuron.

A remarkable feature of locomotion is its capacity for rapid starts and to change speed to match our intentions. However, there is still uncertainty as to how the rhythm-generating circuit - the locomotor engine - in the spinal cord is capable of instantaneously translating brain commands into rhythmic and appropriately paced locomotion.

Using zebrafish as a model organism, researchers at Karolinska Institutet reveal in detail a full reconstruction of the rhythm-generating engine driving locomotion in vertebrates.

"We have uncovered a novel principle of organisation that is crucial to perform an intuitively simple, yet poorly understood function: the initiation of locomotion and the changing of speed," says Abdel El Manira, Professor at the Department of Neuroscience at Karolinska Institutet, who led the study.

The researchers performed a comprehensive and quantitative mapping of connections (synapses) between neurons combined with behavioural analyses in zebrafish. The results revealed that the excitatory neurons in the spinal cord which drive locomotion form three recurrent, rhythm-generating circuit modules acting as gears which can be engaged at slow, intermediate or fast locomotor speeds. These circuits convert signals from the brain into coordinated locomotor movements, with a speed that is aligned to the initial intention.

"The insights gained in our study can be directly applicable to mammals, including humans, given that the organising principle of the brainstem and spinal circuits is shared across vertebrate species," says Abdel El Manira. "Understanding how circuits in the brainstem and spinal cord initiate movements and how speed is controlled will open up for new research avenues aimed at developing therapeutic strategies for human neurological disorders, including traumatic spinal cord injury, and motoneuron degenerative diseases such as amyotrophic lateral sclerosis (ALS)."
-end-
The study was financed by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Brain Foundation and Karolinska Institutet.

Publication: "Multiple rhythm generating circuits act in tandem with pacemaker properties to control the start and speed of locomotion". Jianren Song, Irene Pallucchi, Jessica Ausborn, Konstantinos Ampatzis, Maria Bertuzzi, Pierre Fontanel, Laurence D. Picton and Abdeljabbar El Manira. Neuron, online 22 January 2020, doi: 10.1016/j.neuron.2019.12.030.

Karolinska Institutet

Related Spinal Cord Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Improving treatment of spinal cord injuries
A group led by UC Riverside bioengineering professor Victor G.

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.

An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.

Read More: Spinal Cord News and Spinal Cord Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.