Light at the end of the tunnel for most individuals with low-vision

January 22, 2020

Amsterdam NL, January 22, 2020 - Progress in research and technology is giving rise to an optimistic future for compensation and restoration of low vision, according to research in a special issue of Restorative Neurology and Neuroscience, published by IOS Press. Seven studies explore different aspects of vision loss after damage to the retina, optic nerve or brain due to diseases such as glaucoma or optic neuropathy. Remarkable progress is being made to treat conditions of partial blindness that have previously been considered irreversible.

"The findings in this special issue of Restorative Neurology and Neuroscience showcase how basic science, clinical care and innovation including drugs and devices are being used to stop cell death and induce regeneration to restore vision," explained Guest Editor Andrea Antal, PhD, Group Leader at the Institute of Medical Psychology, University of Magdeburg, Magdeburg, Germany.

In this issue behavioral training and electrical/sensory devices that strengthen residual visual capacities through brain plasticity and restore some vision are also presented and the application possibilities are discussed. "If the retina and/or the optic nerve are completely damaged, then the recovery is not possible. However, with partial damage where there is even a small amount of residual vision still present, almost all patients can achieve some degree of improvement," Prof. Dr. Antal added.

Neurons in the visual system can become silent because they are either anatomically or physiologically damaged, inhibited by toxic substances or lack of oxygen and glucose supply. From the clinical point of view, damaged cells in the visual system are not always dead, but may be inactive, in a hibernation-like mode, or in a hypometabolic stage. It may be possible to reactivate them through medication, training and/or electrical stimulation.

Contributions to this issue demonstrate that uncovering the mechanisms of action of vision recovery and repair is paving the way for a better understanding of neuroplasticity in the visual sciences. Mechanisms currently under study include the replacement (augmentation) of the lost nervous tissue itself, in particular the retina or optic nerve, by means of axonal regeneration, stem cell transplantation and retinal chip implants ("bionic eye"). Another approach aims to make more efficient use of the remaining brain tissue by "reprogramming" or "reorganizing" nerve cell activities and their connections with the goal of activating residual vision using training and electrical stimulation. These advances impact different visual disorders including typical eye-related diseases such as glaucoma and optic neuropathy, and also more brain-related disorders, such as stroke or brain trauma.

"The topic of low vision is gaining scientific momentum. However, despite remarkable progress in the last few years, this subject deserves more attention. Publication of this dedicated issue is timely and will significantly advance the field, providing a source of inspiration as the basis of progress," noted Prof. Dr. Antal and Bernhard Sabel, PhD, Professor of Medical Psychology, Otto-v.-Guericke University of Magdeburg, Germany.

The special issue grew out of a series of conferences on "Low Vision and the Brain" (http://www.4r-vision.com). These conferences addressed the eye-brain interaction in an interdisciplinary manner that touched on ophthalmology, neurology, neuropsychology, rehabilitation medicine, engineering and pharmacology.

While many animal experiments have been successful, the results have not been directly transferrable to human studies. The investigators point to the need to further explore other factors related to vision loss. This research has the potential to greatly influence patient care in the future.
-end-


IOS Press

Related Neuroscience Articles from Brightsurf:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.

The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.

Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.

Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.

The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.

Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.

Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.

Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.

The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.

Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.

Read More: Neuroscience News and Neuroscience Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.