Nav: Home

Mapping the path of climate change

January 22, 2020

WASHINGTON, January 22, 2020 - Since 1880, the Earth's temperature has risen by 1.9 degrees Fahrenheit and is predicted to continue rising, according to the NASA Global Climate Change website. Scientists are actively seeking to understand this change and its effect on Earth's ecosystems and residents.

In Chaos, by AIP Publishing, scientists Yayun Zheng, Fang Yang, Jinqiao Duan, Xu Sun, Ling Fu and Jürgen Kurths present detailed research on climate change shifts, describing the mechanisms behind abrupt transitions in global weather. Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

The researchers develop a climate change model based on probabilistic framework to explore the maximum likelihood climate change for an energy balance system under the influence of greenhouse effect and Lévy fluctuations. These fluctuations, which can present themselves as volcanic eruptions or huge solar outbreaks, for example, are suggested to be one factor that can trigger an abrupt climatic transition.

Some results of these noise fluctuations are the rapid climate changes that occurred 25 times during the last glacial period, a series of pauses in geophysical turbulence, and protein production in gene regulation, which occurs in bursts.

"Although the climate changes may not easily be accurately predicted, we offer insights about the most likely trend in such changes for the surface temperature," said Duan. "In the present paper, we have uncovered that the maximum likelihood path, under an enhanced greenhouse effect, is a step-like growth process when transferring from the current temperature state to the high temperature one."

By understanding the step-like growth process of the greenhouse effect, the authors can map out the path that climate changes may take. The researchers found larger influences of noise fluctuations can result in abrupt shifts from a cold climate state to a warmer one.

"The maximum likelihood path will be expected to be an efficient research tool, in order to better understand the climate changes under the greenhouse effect combined with non-Gaussian fluctuations in the environment," said Duan.
-end-
The article, "The maximum likelihood climate change for global warming under the influence of greenhouse effect and Lévy noise," is authored by Yayun Zheng, Fang Yang, Jinqiao Duan, Xu Sun, Ling Fu and Jürgen Kurths. The article appears in Chaos (DOI: 10.1063/1.5129003) and can be accessed at https://aip.scitation.org/doi/10.1063/1.5129003.

American Institute of Physics

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.