Researchers regrow damaged nerves with polymer and protein

January 22, 2020

PITTSBURGH, Jan. 22, 2020 - University of Pittsburgh School of Medicine researchers have created a biodegradable nerve guide -- a polymer tube -- filled with growth-promoting protein that can regenerate long sections of damaged nerves, without the need for transplanting stem cells or a donor nerve.

So far, the technology has been tested in monkeys, and the results of those experiments appeared today in Science Translational Medicine.

"We're the first to show a nerve guide without any cells was able to bridge a large, 2-inch gap between the nerve stump and its target muscle," said senior author Kacey Marra, Ph.D., professor of plastic surgery at Pitt and core faculty at the McGowan Institute for Regenerative Medicine. "Our guide was comparable to, and in some ways better than, a nerve graft."

Half of wounded American soldiers return home with injuries to their arms and legs, which aren't well protected by body armor, often resulting in damaged nerves and disability. Among civilians, car crashes, machinery accidents, cancer treatment, diabetes and even birth trauma can cause significant nerve damage, affecting more than 20 million Americans.

Peripheral nerves can regrow up to a third of an inch on their own, but if the damaged section is longer than that, the nerve can't find its target. Often, the disoriented nerve gets knotted into a painful ball called a neuroma.

The most common treatment for longer segments of nerve damage is to remove a skinny sensory nerve at the back of the leg -- which causes numbness in the leg and other complications, but has the least chance of being missed -- chop it into thirds, bundle the pieces together and then sew them to the end of the damaged motor nerve, usually in the arm. But only about 40 to 60% of the motor function typically returns.

"It's like you're replacing a piece of linguini with a bundle of angel hair pasta," Marra said. "It just doesn't work as well."

Marra's nerve guide returned about 80% of fine motor control in the thumbs of four monkeys, each with a 2-inch nerve gap in the forearm.

The guide is made of the same material as dissolvable sutures and peppered with a growth-promoting protein -- the same one delivered to the brain in a recent Parkinson's trial -- which releases slowly over the course of months.

The experiment had two controls: an empty polymer tube and a nerve graft. Since monkeys' legs are relatively short, the usual clinical procedure of removing and dicing a leg nerve wouldn't work. So, the scientists removed a 2-inch segment of nerve from the forearm, flipped it around and sewed it into place, replacing linguini with linguini, and setting a high bar for the nerve guide to match.

Functional recovery was just as good with Marra's guide as it was with this best-case-scenario graft, and the guide outperformed the graft when it came to restoring nerve conduction and replenishing Schwann cells -- the insulating layer around nerves that boosts electrical signals and supports regeneration. In both scenarios, it took a year for the nerve to regrow. The empty guide performed significantly worse all around.

With these promising results in monkeys, Marra wants to bring her nerve guide to human patients. She's working with the Food and Drug Administration (FDA) on a first-in-human clinical trial and spinning out a startup company, AxoMax Technologies Inc.

"There are no hollow tubes on the market that are approved by the FDA for nerve gaps greater than an inch. Once you get past that, no off-the-shelf tube has been shown to work," Marra said. "That's what's amazing here."
-end-
Additional authors on the study include Neil Fadia, Jacqueline Bliley, Gabriella DiBernardo, Donald Crammond, Ph.D., Benjamin Schilling, Wesley Sivak, M.D., Ph.D., Alexander Spiess, M.D., Kia Washington, M.D., Matthias Waldner, M.D., Liao Han Tsung, Ph.D., Isaac James, M.D., Danielle Minteer, Ph.D., Casey Tompkins-Rhoades, Deok-Yeol Kim, Riccardo Schweizer, M.D., Debra Bourne, M.D., Adam Cottrill, George Panagis, Asher Schusterman, M.D., Francesco Egro, M.D., Insiyah Campwala, Tyler Simpson, M.S., Douglas Weber, Ph.D., Trent Gause, M.D., Jack Brooker, Tvisha Josyula, Astrid Guevara, Alexander Repko and Christopher Mahoney, all of Pitt.

This study was funded by the Armed Forces Institute of Regenerative Medicine (award number W81XWH-14-2-0003). MedGenesis Therapeutix Inc. supplied the growth-promoting protein. Axomax Technologies was formed after the experiments were completed.

To read this release online or share it, visit https://www.upmc.com/media/news/012220-nerve-regen-marra [when embargo lifts].

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu.

http://www.upmc.com/media

Contact: Erin Hare
Office: 412-864-7194
Mobile: 412-738-1097
E-mail: HareE@upmc.edu

Contact: Allison Hydzik
Office: 412-647-9975
Mobile: 412-559-2431
E-mail: HydzikAM@upmc.edu

University of Pittsburgh

Related Nerve Damage Articles from Brightsurf:

COVID ventilator patients can have permanent nerve damage
Severely ill COVID-19 patients on ventilators are placed in a prone (face down) position because it's easier for them to breathe and reduces mortality.

Temple scientists regenerate neurons in mice with spinal cord injury and optic nerve damage
Each year thousands of patients face life-long losses in sensation and motor function from spinal cord injury and related conditions in which axons are badly damaged or severed.

Synthetic nerve conduit bridges the gap in arm nerve repair
A team of scientists has created a biodegradable, synthetic conduit that repairs large gaps in injured nerves, which supported recovery and accelerated neuronal healing in a macaque model.

Multiple sclerosis: Endogenous retrovirus HERV-W key to nerve tissue damage
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) affecting brain and spinal cord.

Da Vinci's hand impairment caused by nerve damage, not stroke, suggests new study
A fainting episode causing traumatic nerve damage affecting his right hand could be why Leonardo da Vinci's painting skills were hampered in his late career.

Gene therapy blocks peripheral nerve damage in mice
Scientists at Washington University School of Medicine in St. Louis have developed a gene therapy that blocks axonal degeneration, preventing axon destruction in mice and suggesting a therapeutic strategy that could help prevent the loss of peripheral nerves in multiple conditions.

Nerve damage in type 2 diabetes can be detected in the eye
By examining the cornea of the eye with a special microscope it may be possible within ten minutes to diagnose if a person with type 2 diabetes has nerve damage.

A blueprint for future blood-nerve barrier and peripheral nerve disease research
Researchers have detailed, for the first time, the normal human transcriptome of the blood-nerve barrier.

Zika-related nerve damage caused by immune response to the virus
The immune system's response to the Zika virus, rather than the virus itself, may be responsible for nerve-related complications of infection, according to a Yale study.

Autoimmunity may underlie newly discovered painful nerve-damage disorder
An analysis of the medical records of patients treated at Massachusetts General Hospital for an often-mysterious condition involving damage to small nerve fibers supports the hypothesis that some cases are caused by autoimmune disease and also identifies the first effective treatment option.

Read More: Nerve Damage News and Nerve Damage Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.