Pitt researchers propose solutions for networking lag in massive IoT devices

January 22, 2020

PITTSBURGH (Jan 22, 2020) -- The internet of things (IoT) widely spans from the smart speakers and Wi-Fi-connected home appliances to manufacturing machines that use connected sensors to time tasks on an assembly line, warehouses that rely on automation to manage inventory, and surgeons who can perform extremely precise surgeries with robots. But for these applications, timing is everything: a lagging connection could have disastrous consequences.

Researchers at the University of Pittsburgh's Swanson School of Engineering are taking on that task, proposing a system that would use currently underutilized resources in an existing wireless channel to create extra opportunities for lag-free connections. The process, which wouldn't require any additional hardware or wireless spectrum resources, could alleviate traffic backups on networks with many wireless connections, such as those found in smart warehouses and automated factories.

The researchers announced their findings at the Association for Computing Machinery's 2019 International Conference on Emerging Networking Experiments and Technologies, one of the best research conferences in networking techniques.The paper, titled"EasyPass: Combating IoT Delay with Multiple Access Wireless Side Channels," (DOI: 10.1145/3359989.3365421), was named Best Paper at the Conference. It was authored by Haoyang Lu, PhD, Ruirong Chen, and Wei Gao, PhD.

"The network's automatic response to channel quality, or the signal-to-noise ratio (SNR), is almost always a step or two behind," explains Gao, associate professor in the Department of Electrical and Computer Engineering. "When there is heavy traffic on a channel, the network changes to accommodate it. Similarly, when there is lighter traffic, the network meets it, but these adaptations don't happen instantaneously. We used that lag - the space between the channel condition change and the network adjustment - to build a side channel solely for IoT devices where there is no competition and no delay."

This method, which the authors call "EasyPass," would exploit the existing SNR margin, using it as a dedicated side channel for IoT devices. Lab tests have demonstrated a 90 percent reduction in data transmission delay in congested IoT networks, with a throughput up to 2.5 Mbps over a narrowband wireless link that can be accessed by more than 100 IoT devices at once.

"The IoT has an important future in smart buildings, transportation systems, smart manufacturing, cyber-physical health systems, and beyond," says Gao. "Our research could remove a very important barrier holding it back."
-end-


University of Pittsburgh

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.