New perspectives challenge the idea that saturated fats cause heart disease

January 22, 2021

In science, sometimes a new perspective can turn our interpretation of the data upside-down, and necessitate a paradigm shift.

There has been, and continues to be, fierce disagreements in nutrition science as to what constitutes a healthy diet. A key controversy is the role of saturated fats in health and disease. Saturated fats are known to increase blood cholesterol levels, and increased blood cholesterol is often observed in people who develop cardiovascular disease.

It has been thought for more than half a century that saturated fats in the diet promote heart disease by increasing blood cholesterol. However, a new model explains why this so-called "diet-heart hypothesis", which has had a major influence on dietary guidelines, may be wrong.

In a new article published today in the American Journal of Clinical Nutrition, three scientists have raised a question that challenges the diet-heart-hypothesis: Why do saturated fats increase blood cholesterol, and why should this be dangerous? After all, saturated fats occur naturally in a wide variety of foods, including breast milk.

"Cholesterol is a critically important molecule for all cells in the body," explains associate professor Marit Zinöcker, the lead author at Bjørknes University College, Oslo, Norway. "A cell is surrounded by a fluid membrane that controls cell function, and the cells depend on the ability to incorporate a certain amount of cholesterol molecules, so that their membranes don't become too stiff or too fluid."

"The basis of the model is that when saturated fats replace polyunsaturated fats in the diet, less cholesterol is needed in the cell membranes," she explains. The opposite is true when eating more polyunsaturated fatty acids, which include omega-3 and omega-6 fatty acids. "This is because polyunsaturated fats from the diet enter our cell membranes and make them more fluid. The cells adjust the fluidity of their membranes by incorporating cholesterol recruited from the bloodstream. According to the model presented by the researchers, this can explain why blood cholesterol levels decrease when we eat more polyunsaturated fats.

The authors have named the model the "Homeoviscous Adaptation to Dietary Lipids" (HADL) model.

"Cells need to adjust their membrane fluidity according to changes in their environment, such as the access to different types of fat", says co-author Simon N. Dankel, researcher at the Department of Clinical Science, University of Bergen, Norway.

"This phenomenon is called homeoviscous adaptation, and has been described in both microorganisms, vertebrates and in human skin cells. We argue that this is a critical principle in human physiology. Our cells are normally capable of adjusting their cholesterol content according to changes in dietary fats."

"Nutrition research often focuses on what changes in the body, but the question of why something, such as the blood cholesterol, changes, is of equal importance", says co-author Karianne Svendsen, postdoctoral fellow at the Department of Nutrition, University of Oslo, and Oslo University Hospital, Norway.

This is where the new HADL model comes into play, providing an explanation based on adaptive human physiology. "From the perspective of the HADL model, we find logical explanations for why cells need to change their cholesterol content, and thereby the blood cholesterol, when fats in the diet change," says Zinöcker.

"We know that the causes of atherosclerosis and heart disease are multifactorial. With this model we propose to disconnect the blood-cholesterol raising effect of diet from the elevated blood cholesterol that is causally linked to heart disease", says Svendsen.

In the paper, other reasons for elevated LDL-cholesterol in people with cardiovascular disease are discussed, such as low-grade inflammation and insulin resistance. This indicates that elevated blood cholesterol caused by metabolic disruptions must be uncoupled from elevated blood cholesterol caused by a major change in intake of dietary saturated fatty acids. It also questions the benefit of lowering blood cholesterol by adding polyunsaturated fatty acids to the diet, and not addressing the root cause.

"There is at best weak evidence that a high intake of saturated fat causes heart disease," says Dankel. "The overall data are inconsistent and unconvincing, not to mention the lack of a logical biological and evolutionary explanation."

"Also, people with metabolic disorders often do not show the expected changes in blood cholesterol when changing their fat intake, suggesting loss of the normal response."

"The research and reasoning that the HADL model is based on indicates that the effect of dietary fats on blood cholesterol is not a pathogenic response, but rather a completely normal and even healthy adaptation to changes in diet." Zinöcker concludes.

The authors state that although the model is based on existing knowledge of cellular mechanisms, the model still needs to be verified. The authors therefore urge researchers to discuss the HADL model using #HADLmodel and to test the model.
-end-
The paper was published online on January 20 and can be found here:

https://academic.oup.com/ajcn/advance-article-abstract/doi/10.1093/ajcn/nqaa322/6104795

Contact information:

Marit Kolby Zinöcker: marit.zinocker@gmail.com
Simon Nitter Dankel: simon.dankel@gmail.com
Karianne Svendsen: karianne.svendsen@medisin.uio.no

The University of Bergen

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.