Block That (Pavlovian) Kick

January 22, 1998

Pavlov trained his famous dogs to associate food with the ringing of a bell, so that they came to salivate when they heard one whether or not food was present. In 1968, learning researcher L. J. Kamin noticed a curious phenomenon that occurs with animals trained in this manner.

If, after thorough bell training, another stimulus is added -- a light is flashed at the same time the bell is rung and food is presented -- the animals will not learn to associate the light with the food. Even after extensive training, flashing the light won't produce the salivation response.

This phenomenon, called blocking, is believed to regulate the process by which animals and humans learn from their environment, by preventing them from being distracted by erroneous or redundant signals.

Blocking has now been given a firm physiological basis by experimenters working at the University of Southern California. Neuroscientist Jeansok J. Kim, Ph.D., now at Yale University, collaborating with Richard F. Thompson, Ph.D., a longtime researcher in the field, has identified signals going from the cerebellum to a brain structure known as the inferior olive as the cause of the blocking. A report on the work appears in the January 23 issue of the journal Science.

Instead of the dogs used by Pavlov, the work described in Science used a now-standard conditioning regime in which rabbits learn to associate an external stimulus -- a tone or light -- with a puff of air on an eye. After training, the tone or light causes the rabbit to blink, even without the puff of air.

Years of experimentation, including much previous work done in Dr. Thompson's laboratory, have established that this kind of associative learning takes place in the cerebellum, the round structure at the back of the brain, and specifically involves certain cerebellar cells, called Purkinje cells.

A nearby structure called the inferior olive (named because of its shape) connects to the Purkinje cells. These links are thought to carry information about the unconditioned stimulus (i.e., the air puff as opposed to the tone) to the cerebellum.

The olive is also linked to the cerebellum by projections from the cerebellum, consisting of nerve cells which are inhibited from firing by a specific neurochemical called GABA. Neuroscientists have theorized that these connections could carry an inhibitory message to the olive that prevents the olive from contributing to a new association once learning has taken place.

This theory has now been given strong support by the experiment carried out by Dr. Kim, formerly a post-doctoral researcher at USC, now an assistant professor of psychology at Yale; Dr. Thompson, Keck Professor of Psychology and Neuroscience at USC; and USC post-doctoral student David J. Krupa.

By surgically implanting a microsyringe in the olive to inject a specific chemical antagonist which blocks the action of GABA, the researchers were able to selectively turn off the action of the GABA-sensitive cerebellum-olive processes in living animals.

The results of this with regard to blocking were simple and dramatic: animals in which the GABA connection to the olive had been chemically stopped showed no blocking effect.

In the experimental procedure, animals were first trained to associate a puff of air with a tone. When this training was established -- so the rabbits blinked whenever they heard the tone -- the animals were trained further by exposing them to a tone and a flash of light, coupled with a puff of air. Half the rabbits received this second training while having the GABA antagonist present in the cerebellar connections to the olive; the other half received neutral, control injections of artificial cerebrospinal fluid (ACSF).

Simultaneously, a separate group of rabbits who had never received tone training were trained with pulses of light only.

In trials, the control group who received only ACSF injections showed classic blocking behavior: they did not learn to associate the light with the puff of air. However, those injected with the GABA blocker did make this association, despite their previous training -- in fact, the performance of these animals was "not statistically different" from that of the never-trained-with-tones rabbit group.

In their paper's conclusion, Kim and Thompson offer a rationale for the existence of the blocking mechanism. "The importance of responding selectively to those stimuli which reliably predict biologically significant events offers a functional explanation for associative learning in an animal's adaptation to its environment. In the interest of efficiency and simplicity, animals should avoid forming associations with other stimuli that provide no new information.... The behavioral phenomenon of blocking ... appears to circumvent such redundant learning."

The research was supported by grants from the National Institute on Aging, the NSF, the Office of Naval Research, and the Sankyo Co. EM.THOMPSON.KIM USC JAN. 21, 1998

University of Southern California

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to