New culture method for hepatitis C virus uses primary hepatocytes and patient serum

January 23, 2007

Seattle, WA -- Researchers open the way for improved study of hepatitis C virus by devising a novel virus culture system that allows replication of patient-isolated virus in nontransformed hepatocytes, instead of culture-adapted virus strains in transformed cell lines. The related report by Lázaro et al, "Hepatitis C virus replication in transfected and serum-infected cultured human fetal hepatocytes," appears in the February issue of The American Journal of Pathology.

Hepatitis C virus (HCV) infection affects approximately 170,000,000 people worldwide. HCV liver disease, which may induce liver inflammation, cirrhosis, and/or hepatocellular carcinoma, represents the foremost reason for liver transplantation in much of the U.S.

Study of HCV replication within liver cells, or hepatocytes, has been hampered by a lack of adequate virus culture systems. Some systems allow the virus to infect cells but do not permit prolonged replication and production of virus, while other systems rely on derivatives of permissive virus isolates for efficient replication in transformed (mutated) cell lines. Still lacking has been a system to sustain replication of novel virus isolates from patients using nontransformed hepatocytes.

Nelson Fausto of the University of Washington School of Medicine has crossed this hurdle using a human fetal hepatocyte culture system that was previously developed in his lab. Using this system, his group has demonstrated sustained replication and production of virus particles for at least 2 months, with these virus particles able to infect new cells.

In their first experiments, Fausto and colleagues transfected hepatocyte cultures with HCV genomic RNA and found replication of HCV RNA genomes and production of core protein (for virus particle formation). Release of infectious virus particles was confirmed, as media from these cells were able to infect naive hepatocytes. Finally, virus particles were examined by electron microscopy and shown to possess the expected size and shape of HCV virus particles.

Once the system was established, the group examined whether sera from patients carrying HCV could infect the human fetal hepatocytes. When sera from patients infected with different HCV strains were added to the hepatocyte culture system, viral replication occurred and new virus particles were produced.

In both transfection and infection models, virus particles were released in a cyclical manner, with bursts of virus produced every 10-14 days. This is similar to what has been reported during clinical HCV infection, possibly due to the host's natural defenses. Interestingly, cultured hepatocytes responded to viral replication by displaying signs of distress and cell death and by expressing interferon-beta, a cellular antiviral, in an effort to control the infection.

This culture system provides a breakthrough in studying HCV replication in nontransformed hepatocytes, the natural target of the virus. By allowing infection by patient serum containing a wide array of virus strains, this system may allow better understanding of the differences between different strains, further improving treatment strategies.
-end-
This work was supported by grants from the National Institutes of Health and the Center for AIDS Research.

Lázaro CA*, Chang M*, Tang W, Campbell J, Sullivan DG, Gretch DR, Corey L, Coombs RW, Fausto N. Hepatitis C virus replication in transfected and serum-infected cultured human fetal hepatocytes. Am J Pathol 2007 170: 478-489. *These authors contributed equally to this work.

For more information on Dr. Nelson Fausto, please contact Clare Hagerty at the University of Washington School of Medicine: Phone: 206-685-1323; Email: clareh@u.washington.edu.

The American Journal of Pathology, the official journal of the American Society for Investigative Pathology (ASIP), seeks to publish high-quality original papers on the cellular and molecular mechanisms of disease. The editors accept manuscripts which report important findings on disease pathogenesis or basic biological mechanisms that relate to disease, without preference for a specific method of analysis. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, biological, animal, chemical and immunological approaches in conjunction with morphology.

American Journal of Pathology

Related Hepatitis Articles from Brightsurf:

Busting Up the Infection Cycle of Hepatitis B
Researchers at the University of Delaware have gained new understanding of the virus that causes hepatitis B and the ''spiky ball'' that encloses its genetic blueprint.

Liver cancer: Awareness of hepatitis D must be raised
Scientists from the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have studied the most serious consequence of chronic hepatitis: hepatocellular carcinoma.

Hepatitis B: New therapeutic approach may help to cure chronic hepatitis B infection
Researchers at Helmholtz Zentrum München, Technical University of Munich (TUM) and the German Center for Infection Research (DZIF) have developed a novel therapeutic approach to cure chronic hepatitis B.

Anti-hepatitis medicine surprises
A new effective treatment of hepatitis C not only combats the virus, but is also effective against potentially fatal complications such as reduced liver functioning and cirrhosis.

Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.

Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.

How common is Hepatitis C infection in each US state?
Hepatitis C virus infection is a major cause of illness and death in the United States and injection drug use is likely fueling many new cases.

New strains of hepatitis C found in Africa
The largest population study of hepatitis C in Africa has found three new strains of the virus circulating in the general population in sub-Saharan Africa.

High stability of the hepatitis B virus
At room temperature, hepatitis B viruses (HBV) remain contagious for several weeks and they are even able to withstand temperatures of four degrees centigrade over the span of nine months.

Findings could lead to treatment of hepatitis B
Researchers have gained new insights into the virus that causes hepatitis B -- a life-threatening and incurable infection that afflicts more than 250 million people worldwide.

Read More: Hepatitis News and Hepatitis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.