Nav: Home

Hydrogen-powered lawnmowers?

January 23, 2007

In a breakthrough that could make fuel cells practical for such small machines as lawnmowers and chainsaws, researchers have developed a new mechanism to efficiently control hydrogen fuel cell power.

Many standard fuel cell designs use electronics to control power output, but such designs require complex systems to manage humidity and fuel recovery and recycling systems to achieve acceptable efficiency.

The new process controls the hydrogen feed to match the required power output, just as one controls the feed of gasoline into an internal combustion engine. The system functions as a closed system that uses the waste water to regulate the size of the reaction chamber, the site where the gasses combine to form water, heat and electricity.

National Science Foundation (NSF) awardee Jay Benziger of Princeton University developed the new technique with his student Claire Woo, a recipient of an NSF Research Experiences for Undergraduates award and now a doctoral candidate at the University of California, Berkeley. Woo and Benziger published their findings in the February 2007 Chemical Engineering Science, now available online.

The researchers believe the first applications for their technology will be in smaller engines. Fuel cells are currently inefficient on such scales due to the need for fuel recycling and excess hydrogen in standard designs. The researchers' new design is closed, so 100 percent of the fuel is used and there is no need for a costly fuel recycling system.

"The system is ideal for small internal combustion engines that lack emissions controls and are highly polluting," said Benziger. "There is also no need for an extensive hydrogen distribution system for these small motors; the hydrogen could be supplied in returnable tanks such as the propane tanks used for gas grills."

Benziger's next goal is to connect several of the new fuel cells together to increase power, a system that could potentially compete with cells now being tested in the automotive industry.
-end-
Feb. 2007 Chemical Engineering Science article abstract: We demonstrate that the power output from a PEM fuel cell can be directly regulated by limiting the hydrogen feed to the fuel cell. Regulation is accomplished by varying the internal resistance of the membrane-electrode assembly in a self-draining fuel cell with the effluents connected to water reservoirs. The fuel cell functionally operates as a dead-end design where no gas flows out of the cell and water is permitted to flow in and out of the gas flow channel. The variable water level in the flow channel regulates the internal resistance of the fuel cell. The hydrogen and oxygen (or air) feeds are set directly to stoichiometrically match the current, which then control the water level internal to the fuel cell. Standard PID feedback control of the reactant feeds has been incorporated to speed up the system response to changes in load. With dry feeds of hydrogen and oxygen, 100% hydrogen utilization is achieved with 130% stoichiometric feed on the oxygen. When air was substituted for oxygen, 100% hydrogen utilization was achieved with stoichiometric air feed. Current regulation is limited by the size of the fuel cell (which sets a minimum internal impedance), and the dynamic range of the mass flow controllers. This type of regulation could be beneficial for small fuel cell systems where recycling unreacted hydrogen may be impractical.

National Science Foundation

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

The One-Minute Cure: The Secret to Healing Virtually All Diseases
by Madison Cavanaugh (Author)

Hydrogen: The Essential Element
by John S. Rigden (Author)

Hydrogen Fuel: Production, Transport, and Storage
by Ram B. Gupta (Editor)

The Hydrogen Sonata (Culture)
by Iain M. Banks (Author)

The Magic of Hydrogen Peroxide
by Emily Thacker (Author)

2014 True Power of Hydrogen Peroxide, Miracle Path To Wellness - Mary Wright, goes beyond One Minute Cure
by Mary Wright (Author)

Hydrogen (Chemistry of Everyday Elements)
by Kathryn Hulick (Author)

Hydrogen Peroxide: Medical Miracle
by William Campbell Douglass II (Author)

Hydrogen (Exploring the Elements)
by Clara Maccarald (Author)

True Power of Hydrogen Peroxide
by self published (Publisher)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Right To Speak
Should all speech, even the most offensive, be allowed on college campuses? And is hearing from those we deeply disagree with ... worth it? This hour, TED speakers explore the debate over free speech. Guests include recent college graduate Zachary Wood, political scientist Jeffrey Howard, novelist Elif Shafak, and journalist and author James Kirchick.
Now Playing: Science for the People

#486 Volcanoes
This week we're talking volcanoes. Because there are few things that fascinate us more than the amazing, unstoppable power of an erupting volcano. First, Jessica Johnson takes us through the latest activity from the Kilauea volcano in Hawaii to help us understand what's happening with this headline-grabbing volcano. And Janine Krippner joins us to highlight some of the lesser-known volcanoes that can be found in the USA, the different kinds of eruptions we might one day see at them, and how damaging they have the potential to be. Related links: Kilauea status report at USGS A beginner's guide to Hawaii's otherworldly...