JILA solves problem of quantum dot 'blinking'

January 23, 2008

Quantum dots--tiny, intense, tunable sources of colorful light--are illuminating new opportunities in biomedical research, cryptography and other fields. But these semiconductor nanocrystals also have a secret problem, a kind of nervous tic. They mysteriously tend to "blink" on and off like Christmas tree lights, which can reduce their usefulness.

Scientists at JILA have found one possible way to solve the blinking problem and have induced quantum dots to emit photons (the smallest particles of light) faster and more consistently. The advance could make quantum dots more sensitive as fluorescent tags in biomedical tests and single-molecule studies and steadier sources of single photons for "unbreakable" quantum encryption. JILA is a joint venture of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

By bathing the dots in a watery solution of an antioxidant chemical used as a food additive, the JILA team increased photon emission rate four- to fivefold, a "shocking" result because the rate at which light radiates is generally considered an immutable property of the dot, JILA/NIST Fellow David Nesbitt says. The JILA scientists dramatically reduced the average time delay between excitation of a quantum dot and resulting photon emission from 21 nanoseconds to 4 nanoseconds while reducing the probability of blinking up to 100 fold. Nesbitt calls blinking the "hidden dirty secret" of quantum dots. (Nesbitt notes that blinking is not always an annoyance. For example, it can serve as a measurement probe of very slow rates of electron flow through nanoscale materials).

The quantum dots used in the JILA experiments were made of cadmium-selenide cores just 4 nanometers wide coated with zinc sulfide. When a dot is excited by a brief laser pulse, one electron is separated from the "hole" it normally occupies. A few nanoseconds later, the electron typically falls back into the hole, sometimes producing a single photon--always in a color that depends on dot size, greenish-yellow in this case. But every so often the electron fails to make it back to its hole and instead is ejected to imperfections on the dot's surface. The chemical added at JILA apparently attaches to these imperfections, blocking the electron from being trapped and thereby preventing the dot from blinking off.
The JILA research was funded in part by the National Science Foundation and NIST.

* V. Fomenko and D. J. Nesbitt. Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Letters. Published online Dec. 21, 2007.

National Institute of Standards and Technology (NIST)

Related Quantum Dots Articles from Brightsurf:

Direct visualization of quantum dots reveals shape of quantum wave function
Trapping and controlling electrons in bilayer graphene quantum dots yields a promising platform for quantum information technologies.

Scientists age quantum dots in a test tube
Researchers from MIPT and the RAS Institute of Problems of Chemical Physics have proposed a simple and convenient way to obtain arbitrarily sized quantum dots required for physical experiments via chemical aging.

'Growing' active sites on quantum dots for robust H2 photogeneration
Chinese researchers had achieved site- and spatial- selective integration of earth-abundant metal ions in semiconductor quantum dots (QDs) for efficient and robust photocatalytic H2 evolution from water.

New insights into the energy levels in quantum dots
Researchers from Basel, Bochum and Copenhagen have gained new insights into the energy states of quantum dots.

What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.

Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.

Controlling the charge state of organic molecule quantum dots in a 2D nanoarray
Australian researchers have fabricated a self-assembled, carbon-based nanofilm where the charge state (ie, electronically neutral or positive) can be controlled at the level of individual molecules.

Modified quantum dots capture more energy from light and lose less to heat
Los Alamos National Laboratory scientists have synthesized magnetically-doped quantum dots that capture the kinetic energy of electrons created by ultraviolet light before it's wasted as heat.

Using quantum dots and a smartphone to find killer bacteria
A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.

Synthesizing single-crystalline hexagonal graphene quantum dots
A KAIST team has designed a novel strategy for synthesizing single-crystalline graphene quantum dots, which emit stable blue light.

Read More: Quantum Dots News and Quantum Dots Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.