Marginal lands are prime fuel source for alternative energy

January 23, 2013

Marginal lands--those unsuited for food crops--can serve as prime real estate for meeting the nation's alternative energy production goals.

In the current issue of the journal Nature, scientists at Michigan State University (MSU) and other institutions show that marginal lands are a huge untapped resource for growing mixed-species cellulosic biomass.

These lands could annually produce up to 5.5 billion gallons of ethanol in the Midwest alone. Cellulosic ethanol is a biofuel produced from wood, grasses or the inedible parts of plants.

"Understanding the environmental impact of widespread biofuel production is a major unanswered question in the U.S. and worldwide," said Ilya Gelfand, lead author of the paper.

"We estimate that using marginal lands for growing cellulosic biomass crops could provide up to 215 gallons of ethanol per acre with substantial greenhouse gas mitigation."

The notion of making better use of marginal lands has been around for nearly 15 years. However, this is the first study to provide an estimate for greenhouse gas benefits, and an assessment of the total potential of these lands to produce significant amounts of biomass, Gelfand said.

Focusing on 10 midwestern states, researchers from MSU, the Pacific Northwest National Laboratory and the University of Maryland used 20 years of data from the National Science Foundation (NSF) Kellogg Biological Station (KBS) Long-Term Ecological Research (LTER) site. Kellogg Biological Station is one of 26 such NSF LTER sites in ecosystems around the world from grasslands to deserts, coral reefs to tundra.

"The study underscores the critical role that long-term basic research plays in determining the optimum balance between economic prosperity and environmental sustainability," said Saran Twombly, program director in NSF's Division of Environmental Biology.

"Long-term basic experiments suggest that wise management of marginal lands, rather than wholesale conversion of valuable agricultural lands, could contribute significantly to a sustainable future," Twombly said.

The scientists characterized the comparative productivity and greenhouse gas impacts of different crops, including corn, poplar, alfalfa and old-field vegetation. They then used a supercomputer to identify and model biomass production that could grow enough feedstock to support a local biorefinery with a capacity of at least 24 million gallons per year.

The final tally of 5.5 billion gallons of ethanol represents about 25 percent of Congress' 2022 cellulosic biofuels target, said Phil Robertson, co-author of the paper and director of the KBS LTER site. "The value of marginal lands for energy production has been long-speculated and often discounted," he said.

"This research shows that these lands could make a major contribution to transportation energy needs, while providing substantial climate and--if managed properly--conservation benefits." This is also the first study to demonstrate that grasses and other non-woody plants that grow naturally on unmanaged lands are sufficiently productive to make ethanol production worthwhile, he said.

Conservative numbers were used in the study, the scientists said, and production efficiency could be increased by carefully selecting the mix of plant species.

Additional benefits of using marginal lands include:
-end-
The research was also funded by the Great Lakes Bioenergy Research Center and MSU AgBioResearch.

-NSF-

National Science Foundation

Related Ethanol Articles from Brightsurf:

Spraying ethanol to nanofiber masks makes them reusable
A joint research team from POSTECH and Japan's Shinshu University evaluates the filtration efficiency of nanofiber and melt-blown filters when cleaned with ethanol.

Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.

Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.

Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.

Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.

Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.

Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.

Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.

Read More: Ethanol News and Ethanol Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.