Nav: Home

A new model for activation of the immune system

January 23, 2017

By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated. The activation of the C1 protein is a fundamental mechanism in immunology, and therefore the new research results also have medical potential.

An important part of the immune system is the so-called complement system. When the immune system detects a microorganism or other signs of danger, the complement protein C1 is converted into an active enzyme which can cleave other proteins, thus initiating a chain reaction. The end result of this reaction is that, for example, invading pathogenic microorganisms are ingested by our immune cells, and an inflammatory response which leads to the elimination of the microorganisms is triggered. In the past few years, there has been increased focus on the C1 protein, since -- in addition to its function in the immune system -- it has been shown to be closely involved in the development of the nervous system and neurological disorders.

Textbooks in immunology claim that the C1 protein is activated when a very complicated change in the structure within each C1 molecule takes places when it recognises, for example, a pathogenic organism. The new research results from Aarhus University discard this dogma by showing that activation of the complement system occurs when two C1 proteins are located sufficiently close to each other, which is a much more simple and general mechanism.

Close collaboration led to results

The new results were achieved through a close collaboration between four research groups at Aarhus University. First, Postdoctoral Fellow Simon A. Mortensen isolated a special version of the C1 complex with Professor Steffen Thiel from the Department of Biomedicine. Also Professor Jens Christian Jensenius and Laboratory Technician Annette Hansen participated in this work. These samples were analysed with electron microscopy where individual C1 molecules could be identified in collaboration with Associate Professor Bjørn Sander and Associate Professor Monika Golas at the Department of Biomedicine.

"I had carefully optimised my protocol for the preparation of the C1 complex, and it took a long time -- at least a year -- to make the right sample," says Simon A. Mortensen. "But the first time I saw the C1 molecule clearly with Bjørn and Monika, I was so excited, and it was definitely worth the hard work."

In parallel with this, PhD Student Rasmus K. Jensen used X-rays to examine the structure of Simon's C1 protein in solution under the guidance of Professor Gregers Rom Andersen from the Department of Molecular Biology and Genetics with the assistance of Professor Jan Skov Pedersen from the iNANO Center. Jan and Simon made the first measurements in Aarhus with X-rays, while Simon, Rasmus and Gregers collected the best data on the PETRA III Synchrotron in Hamburg, and Rasmus then spent months analysing this data.

"The C1 complex was actually too big and complex for our computer programs to calculate its structure," says Rasmus K. Jensen. "So I obtained a special version for this task. Then I went through many cycles of calculations, and each took two weeks, despite the fact that I used powerful computers."

"The C1 complex is the largest and most complicated protein that I have ever worked with for nearly 30 years. Its structure is very unusual so it has been challenging but also really interesting," adds Professor Gregers Rom Andersen.

The results showed that the old model for the activation of the C1 protein had to be discarded because it was simply physically impossible.

"During the past four to five years, we had the feeling that the old model was not correct," says Professor Steffen Thiel. "Also, three years ago, we demonstrated that a corresponding protein with a similar function in another branch of the complement system was activated in the same way. Therefore, with the new results for the C1 protein, we feel confident in suggesting a general model for activation of complement. Thus, we now have a better understanding of how our immune system works," concludes Steffen Thiel.

The research has been published in the renowned journal Proceedings of the National Academy of Sciences USA (PNAS).
-end-
For further information, please contact

Professor Gregers Rom Andersen
Department of Molecular Biology and Genetics
Aarhus University, Denmark
gra@mbg.au.dk - +45 3025 6646

Professor Steffen Thiel
Department of Biomedicine
Aarhus University, Denmark
st@biomed.au.dk - +45 2927 0890

Aarhus University

Related Immune System Articles:

Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
More Immune System News and Immune System Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.