Nav: Home

Can the donut-shaped magnet 'CAPPuccino submarine' hunt for dark matter?

January 23, 2017

Scientists at the Center for Axion and Precision Physics Research (CAPP), within the Institute for Basic Science (IBS) optimized some of the characteristics of the magnet to hunt for one possible component of dark matter called axion.

Although it sounds hard to believe, everything we see with our naked eyes or through microscopes and telescopes accounts for just 4% of the known Universe. The rest comprises dark energy (69%) and dark matter (27%). Although there seems to be more dark matter than visible matter in the Universe, we still have not been able to directly detect it. The reason is that dark matter does not emit light or absorb electromagnetic waves, so it is really hard to observe. Interestingly, dark matter is needed to explain the motions of galaxies and some of the current theories of galaxy formation and evolution. For example, the galaxy that contains our solar system, the Milky Way, seems to be enveloped by a much larger halo of dark matter. Its halo is quite different from the one we draw behind angels; it is actually invisible, but its existence is inferred through its effects on the motions of stars and gases.

Although dark matter particles have not been detected so far, scientists know that these particles have a very small mass and are distributed throughout the Universe. One dark matter particle candidate is the axion. Axions have extremely weak interactions with matter and so scientists need special equipment to catch their presence. Specifically, scientists use the so-called axion to two-photons coupling technique, which takes advantage of the fact that an axion passing through a strong magnetic field can interact with a photon and convert into another photon. To record this interaction, IBS scientists are in the process of building haloscopes in Daejeon in South Korea.

Haloscopes contain resonant cavities immersed in extra-strong magnetic field. "In simple terms, you can image the resonant cavity as a cylinder, like a soft drink can, where the energy of the photons generated from the axions-photons interaction is amplified," explains KO Byeong Rok, first author of this study.

The magnets used for these types of experiments so far have the shape of a coil wound into a helix, technically known as a solenoid. However, depending on the height of the magnet, there is the risk of losing the signal coming from the axion-photon interaction. For this reason, IBS scientists decided to look deeper into another type of magnets shaped like donuts, called toroidal magnets.

"Magnets are the most important feature of the haloscope, and also the most expensive. While other experiments seeking to detect dark matter around the world use solenoid magnets, we are the first to try to use toroidal magnets. Since it has never been used before, you cannot easily buy the equipment, so we develop it ourselves," explains Professor Ko.

In order to hunt the axion, scientists need to get out in front of it, and predict the magnitude of the electromagnetic energy expected from the axion-to-photon conversion. Electromagnetic energy is due to the sum of electric and magnetic energies. Both of them can be easily calculated for a solenoid magnet, but if the magnet is toroidal shaped, it is practically impossible to calculate the magnetic energy analytically. Because of this, it was believed that toroidal magnets could not be used for the haloscope.

This paper from IBS shows the opposite. Starting from an adjusted version of the Maxwell equation, which defines how charged particles give rise to electric and magnetic forces. Scientists found that electric energy and magnetic energy from the axion-photon interaction are equal in both types of magnets. Therefore, even though the magnetic energy of a toroidal magnet is unknown, in order to obtain the electromagnetic energy which is the sum of the two, it is possible to double up the electric energy and obtain the magnetic energy.

Another finding is that the energy emitted from the interaction and conversion of the axion to photon is independent from the position of the cavity inside a solenoid magnet. However, this is not the case for toroid magnets.

IBS CAPP scientists have nicknamed the toroidal cavity "CAPPuccino submarine" because its color resembles the beverage, and its particular shape. All the theoretical findings published in this paper are going to form a solid background for the development and prototyping of new machines for the search of dark matter.
-end-


Institute for Basic Science

Related Dark Matter Articles:

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.
Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.