Nav: Home

Research helps explain how B cell metabolism is controlled

January 23, 2017

La Jolla, Calif., January 23, 2016 (embargoed until 11:00 A.M. EST) -- B cells, the lymphocytes best known for making antibodies, live a complex life. They start developing in the bone marrow and then move through the spleen, lymph nodes and blood, taking on tasks that range from recognizing foreign substances to replication, quiescence, and generating a lasting memory of pathogens. But little is known about how B cell metabolism adapts to each of these environments, insights that may improve our understanding of B cell diseases, such as non-Hodgkin's lymphoma.

"Our research shows that the protein GSK3 plays a crucial role in helping B cells meet the energy needs of their distinct states," says Robert Rickert, Ph.D., director of the Tumor Microenvironment and Cancer Immunology Program at Sanford Burnham Prebys Medical Discovery Institute (SBP). "It acts as a metabolic sensor, or checkpoint, that promotes the survival of circulating B cells while limiting growth and proliferation of B cells in germinal centers. The findings are particularly relevant for certain B cell pathologies, including lymphoma subtypes, where there is an increased demand for energy to support the hyperproliferation of cells in a microenvironment that may be limited in nutrients."

B cells have different metabolic needs depending on their environment. In the blood, circulating B cells are quiescent, consuming little energy. In germinal centers--the sites within lymph nodes where mature B cells cluster--B cells proliferate and undergo hypermutation of their antibody genes to generate high-affinity antibodies. These processes require enormous amounts of energy, so these B cells consume lots of sugars, fatty acids and amino acids.

The new study, published today in Nature Immunology, found that GSK3 adjusts metabolism to match each of these needs. In circulating B cells, GSK3 limits overall metabolic activity, while in proliferating B cells in germinal centers, GSK3 slows glycolysis and production of mitochondria.

GSK3 function is essential for B cell survival in germinal centers. To understand why, Rickert's team looked at how B cells in these regions generate energy, and found that because these B cells are so metabolically active, they consume nearly all available glucose. That switches on a secondary, less efficient but non-oxygen-dependent means of generating energy called glycolysis. High glycolytic activity leads to accumulation of toxic reactive oxygen species (ROS), as does rapid manufacture of mitochondria, which tend to leak the same chemicals. Thus, by restraining metabolism in specific ways, GSK3 prevents ROS-induced cell death.

"Our results were really surprising," Rickert commented. "Until now, we would have thought that slowing metabolism would only be important for preventing B cells from becoming cancerous--which it indeed may be. These studies provide insight into the dynamic nature of B cell metabolism that literally 'fuels' differentiation in the germinal center to produce an effective antibody response"

"It's not yet clear whether or how GSK3 might be a target for future therapies for B cell-related diseases, but this research opens a lot of doors for further studies," Rickert said. "To start with, we plan to investigate how GSK3 is regulated in lymphoma and how that relates to changes in metabolism. That research could lead to new approaches to treating lymphoma."

-end-

This research was performed in collaboration with scientists at Eli Lilly and the Lunenfeld-Tanenbaum Research Institute at the University of Toronto. Funding was provided by the National Institutes of Health, the Lilly Research Award Program, the Arthritis National Research Foundation, and the Canadian Institutes of Health Research.

About SBP

Sanford Burnham Prebys Medical Discovery Institute (SBP) is an independent nonprofit medical research organization that conducts world-class, collaborative, biological research and translates its discoveries for the benefit of patients. SBP focuses its research on cancer, immunity, neurodegeneration, metabolic disorders and rare children's diseases. The Institute invests in talent, technology and partnerships to accelerate the translation of laboratory discoveries that will have the greatest impact on patients. Recognized for its world-class NCI-designated Cancer Center and the Conrad Prebys Center for Chemical Genomics, SBP employs about 1,100 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at SBPdiscovery.org or on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

Sanford-Burnham Prebys Medical Discovery Institute

Related Lymphoma Articles:

The gene behind follicular lymphoma
EPFL scientists have discovered an important gene whose loss lies behind follicular lymphoma, an incurable cancer.
Hodgkin lymphoma survivors at high risk of second cancers
Patients who are cured of Hodgkin lymphoma are at a high risk of developing a second type of cancer, particularly if they have a family history of the disease, a major new study reports.
Follicular lymphoma: A tale of 2 cancers
Many people survive well beyond 10 years following diagnosis of follicular lymphoma.
Patients with advanced lymphoma in remission after T-cell therapy
In a paper published today in Science Translational Medicine, researchers from Fred Hutchinson Cancer Research Center shared data from an early-phase study of patients with advanced non-Hodgkin lymphoma (NHL) who received JCAR014, a Chimeric Antigen Receptor (CAR) T cell treatment, and chemotherapy.
$2.5 million boost for lymphoma research through Tanoto Foundation
The SingHealth Duke-NUS Academic Medical Centre announced today that a S$2.5 million Tanoto Foundation Professorship in Medical Oncology has been conferred to Assoc Prof Lim Soon Thye, Head and Senior Consultant of the Division of Medical Oncology at the National Cancer Centre Singapore; and Assistant Dean at Duke-NUS Medical School.
Lymphoma overrides a key protein's quadruple locks
Protein chemists at Johns Hopkins report they are closer to explaining why certain blood cancers are able to crack a molecular security system and run rampant.
Study: Bacterium that causes Q fever linked to non-Hodgkin lymphoma
The bacterium that causes Q fever, an infectious disease that humans contract from animals, is associated with an increased risk of lymphoma, according to a study published online today in Blood, the Journal of the American Society of Hematology.
Lymphoma: How the tumor escapes the immune response
Natural killer cells of the immune system can fend off malignant lymphoma cells and thus are considered a promising therapeutic approach.
Follow-up PET/CT more than 95 percent sensitive for non-Hodgkin lymphoma
Non-Hodgkin lymphoma, a potentially devastating cancer of the blood and immune system, can range from relatively easy to treat to very aggressive.
Hodgkin's lymphoma: The treatment can have late sequelae
Hodgkin's lymphoma -- cancer of the lymph nodes -- arises in more than 150 children and adolescents in Germany each year.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.