Nav: Home

Choreographing the microRNA-target dance

January 23, 2017

DALLAS - January 19, 2017 - Scientists face a conundrum in their quest to understand how microRNAs regulate genes and therefore how they influence human disease at the molecular level: How do these tiny RNA molecules find their partners, called messenger RNAs, on a crowded cellular dancefloor?

MicroRNAs pair up with messenger RNAs to turn down the production of proteins. But there are far more of the messenger RNAs in the crowd, leaving scientists to ponder how the microRNAs can efficiently regulate a large excess of messenger RNA partners.

Molecular biologists at UT Southwestern Medical Center were able to uncover a new mechanism that choreographs this complex molecular dance by applying the latest in gene editing technology combined with a traditional method of making a microRNA target produce a fluorescent green protein. The successful "dance move" - called Argonaute phosphorylation - enables a microRNA to switch messenger RNA dance partners more efficiently.

"Our research addresses a fundamental question regarding how a microRNA is able to regulate a large set of target messenger RNAs, even though the microRNA is greatly outnumbered," said Dr. Joshua Mendell, Professor of Molecular Biology and a Howard Hughes Medical Institute Investigator at UT Southwestern.

The microRNA pathway is critically important to health and disease, serving as a kind of volume control for genes, dialing down the expression of specific proteins, said Dr. Mendell, a CPRIT Scholar in Cancer Research. UTSW researchers have previously found, for example, that defects in the microRNA pathway contribute to certain childhood cancers and specific microRNAs can accelerate or inhibit cancer by regulating tumor suppressor or tumor promoting genes. MicroRNAs play important roles in many other diseases including heart disease.

CRISPR gene editing technology allowed the scientists to switch off a different gene in each cell across millions of cells. Cells became more fluorescent when genes that impacted the microRNA pathway were switched off, leading scientists to the discovery of the new phosphorylation mechanism involved in controlling microRNA-target interactions.

"This research uncovered a new and fundamental aspect of the microRNA pathway in which phosphate molecules are rapidly added and removed from key proteins in the pathway. We believe this mechanism allows microRNAs to engage target messenger RNAs, silence them, and then efficiently move on to the next target," said first author Ryan Golden a student in the Medical Scientist Training Program at UT Southwestern and a member of the Mendell lab.

In addition to shedding new light on the microRNA pathway, researchers say the distinctive combination of techniques used to decipher the pathway should be widely applicable to other biological questions, allowing labs to quickly identify critical components of important genetic pathways.

"This study represents the first time this experimental strategy has been used to study the microRNA pathway on a genome-wide scale. It is a very powerful approach. This work lays out a methodology that could be used to study many different biomedical problems," said Dr. Mendell, a member of the Harold C. Simmons Comprehensive Cancer Center.
-end-
The work, published in the journal Nature, was supported by the Howard Hughes Medical Institute and grants from Cancer Prevention and Research Institute of Texas (CPRIT), the National Institutes of Health, the Cancer Research Institute, and the Leopoldina Fellowship Program from the German National Academy of Sciences Leopoldina.

Collaborators included researchers with the Eugene McDermott Center for Human Growth and Development; Next Generation Sequencing Core; the UT Southwestern Flow Cytometry Core; the UT Southwestern Protein Chemistry Technology Core; the Quantitative Biomedical Research Center; the Harold C. Simmons Comprehensive Cancer Center; the Hamon Center for Regenerative Science and Medicine; and the Center for the Genetics of Host Defense.

Researchers were Ryan J. Golden, first author and graduate student researcher in the Medical Scientist Training Program; graduate student researchers Hema Manjunath, Andres Ramirez-Martinez, and Jiaxi Wu; postdoctoral researchers Dr. Tuo Li, Dr. Juliane Braun, and Dr. Florian Kopp; Beibei Chen, computational biologist; Dr. Xiang Chen, research specialist; Vanessa Schmid, manager of the McDermott Center Next Generation Sequencing Core; Dr. Tsung-Cheng Chang, Assistant Professor of Molecular Biology; Dr. Vincent Tagliabracci, Assistant Professor of Molecular Biology and Michael L. Rosenberg Scholar in Medical Research; Dr. Yang Xie, Associate Professor of Clinical Sciences; Dr. Zhijian Chen, Professor of Molecular Biology and the Center for the Genetics of Host Defense, Howard Hughes Medical Institute Investigator, who holds the George L. MacGregor Distinguished Chair in Biomedical Science.

About UT Southwestern Medical Center


UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

UT Southwestern Medical Center

Related Microrna Articles:

MicroRNA exhibit unexpected function in driving cancer
New research shows that both strands of microRNA cooperate to drive growth and aggressiveness across cancer types, suggesting that these molecules may be more central in deadly cancers than previously thought.
Investigators narrow in on a microRNA for treating multiple sclerosis
Investigators from Brigham and Women's Hospital have discovered a microRNA -- a small RNA molecule -- that increases during peak disease in a mouse model of MS and in untreated MS patients.
MicroRNA comprehensively analyzed
Messenger RNA transmits genetic information to the proteins, and microRNA plays a key role in the regulation of gene expression.
Novel strategy using microRNA biomarkers can distinguish melanomas from nevi
Melanoma is the least common but one of the most deadly skin cancers.
Methylation of microRNA may be a new powerful biomarker for cancer
Researchers from Osaka University found that levels of methylated microRNA were significantly higher in tissue and serum from cancer patients compared with that from normal controls.
New insight into microRNA function can give gene therapy a boost
Scientists at the University of Eastern Finland and the University of Oxford have shown that small RNA molecules occurring naturally in cells, i.e. microRNAs, are also abundant in cell nuclei.
Researchers unlock mysteries of complex microRNA oncogenes
A new collaborative study, led by researchers at McGill University's Goodman Cancer Research Centre (GCRC), and published in the journal Molecular Cell, uncovers novel functions for polycistronic microRNAs and showing how cancers such as lymphoma twist these functions to reorganize the information networks that control gene expression.
Using microRNA to detect early signs of type 2 diabetes in teens
Exosomes, tiny nanoparticles released from fat cells, may hold biochemical clues to the early development of type 2 diabetes, according to a new study of 55 teens with obesity
MicroRNA-like RNAs contribute to the lifestyle transition of Arthrobotrys oligospora
Lifestyle transition is a fundamental mechanism that fungi have evolved to survive and proliferate in different environments.
Scientists home in on microRNA processing for novel cancer therapies
More than a decade of research on the mda-7/IL-24 gene has shown that it helps to suppress a majority of cancer types, and now scientists are focusing on how the gene drives this process by influencing microRNAs.
More Microrna News and Microrna Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.