Nav: Home

How male dragonflies adapt wing color to temperature

January 23, 2019

CLEVELAND--New research from Case Western Reserve University in how dragonflies may adapt their wing color to temperature differences might explain color variation in other animals, from lions to birds.

Further, the findings could also provide evolutionary biologists clues about whether rising global temperatures might adversely affect some species.

Michael Moore, a graduate biology student, and Ryan Martin, an assistant professor of biology, recently published their findings in the journal Ecology Letters.

"People have long been aware of variation in dragonfly wing color, but what we are showing in this new work is an overlooked environmental factor--how temperature affects coloration," Martin said. "This could turn out to also determine some of the really cool extravagant traits we like to look at, such as coloration in birds."

Their findings follow a two-year study that began with a hunch about how the wing color on male Blue Dasher dragonflies in the western United States was different from their counterparts in Northeast Ohio.

They reviewed vast amounts of dragonfly photographs compiled by citizen scientists on the website iNaturalist.org and then, with the help of graduate student Iulian Gherghel, cross-referenced that information with weather data.

"I went through 600 pictures from the couch to begin this research," said Moore with a laugh. "After that, it was just mapping it with the corresponding environmental and weather data. It turns out that males in the hottest parts of North America have way less colorful wings, and we wanted to know why. "

Dragonfly weightlifting and other experiments

But the research really took off in the summer of 2017 at the Case Western Reserve farm in Hunting Valley, Ohio, as Moore and Hathaway Brown high-school student Cassandra Lis chased down male dragonflies as they fought to defend their respective territories surrounding a pond.

Across a series of experiments, they then marked each male's body with a series of colors for individual identification at the pond, colored some of their wings with a dark marker, and put the different groups through a weightlifting test to measure their strength.

The conclusion: The dragonflies with darker wings absorbed more heat from the sun, much like we do when wearing a dark shirt on a sunny day. That simple act caused the muscles of those cold-blooded dragonflies to warm more quickly, grow stronger and more successfully defend their territory or win females.

Findings may extend to other species

"Further tests, however, showed that, when temperatures were too hot, darker wings caused the dragonflies to overheat and fly poorly," Moore said.

"These findings suggest that this poor flight would then cause those overheated males to lose the territorial battles and their mates, which in turn could be why males in the warmest parts of North America have adapted to produce less colorful wings."

The study's three main conclusions:

1, The dragonfly observations could help scientists explain how similar traits have evolved across the animal kingdom globally.

"We know, for example, that male lions with dark manes tend to overheat more, which translated into how mane size and darkness have evolved across Africa and Asia," Moore said, citing previous scientific research.

"And if it's happening in dragonflies and lions, two species separated by hundreds of millions years of evolution, it's seems possible that it could be a pretty common pattern."

2. Dragonflies with dark coloring--and other animals--could begin to overheat as global temperatures continue to rise if they can't adapt quickly enough, or if they do adapt, might do so by losing their distinctive colors.

3. Because different dragonfly species, like many animal species, mate based on appearance, adaptation to rising global temperatures could lead to more interbreeding because of the confusion over color.
-end-
For more information, contact Mike Scott at mike.scott@case.edu

Case Western Reserve University

Related Color Articles:

Stretchable variable color sheet that changes color with expansion and contraction
Toyohashi University of Technology research team have succeeded in developing a variable color sheet with a film thickness of 400 nanometers that changes color when stretched and shrunk.
High color purity 3D printing
ICFO researchers report on a new method to obtain high color purity 3D objects with the use of a new class of nanoparticles.
Building a better color vision test for animals
University of Cincinnati biologists modified simple electronics to create a color vision test for fiddler crabs and other animals.
Defects add color to quantum systems
Researchers are investigating light-emitting defects in materials that may someday form the basis of quantum-based technologies, such as quantum computers, quantum networks or engines that run on light.
The color of your clothing can impact wildlife
Your choice of clothing could affect the behavioral habits of wildlife around you, according to a study conducted by a team of researchers, including faculty at Binghamton University, State University of New York.
Recovering color images from scattered light
Engineers at Duke University have developed a method for extracting a color image from a single exposure of light scattered through a mostly opaque material.
Deciphering how the brain encodes color and shape
There are hundreds of thousands of distinct colors and shapes that a person can distinguish visually, but how does the brain process all of this information?
Fish-inspired material changes color using nanocolumns
Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.
Iridescent color from clear droplets
Under the right conditions, ordinary clear water droplets on a transparent surface can produce brilliant colors, without the addition of inks or dyes.
Turning a porous material's color on and off with acid
Stable, color-changing compound shows potential for electronics, sensors and gas storage.
More Color News and Color Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.