Nav: Home

Advances in 3D and organoid cell culture

January 23, 2019

A new collection of reviews and original research articles in SLAS Technology illustrate how new technologies and advanced cell culture are accelerating basic research, drug discovery and drug development.

When cultured under 3D conditions, human induced pluripotent stem cells (iPSCs) provide optimized systems that more accurately reflect disease-related target mutations, compound pharmacology and toxicology.

The review articles in this collection feature a comprehensive, two-part, overview of the use of 3D culture, including spheroids and organoids, when growing human iPSCs for use in disease modeling, compound screening and lead optimization. The research articles address the high-throughput screening of glioblastoma oncospheres in drug, a microfluidic approach to optimization of culture conditions for human iPSCs differentiation, and novel hydrogels for use in microlayered tissue constructs.

Collectively, this special collection, published in the February 2019 issue of SLAS Technology, illustrates how the human iPS cells and 3D cell culture technology provide powerful approaches to the development of novel and more effective therapies.
  • Editorial Introduction: Convergence of Three-Dimensional Cell Culture and Human iPS Cells: Improving Clinical Relevance in Drug Discovery by Guest Editor Richard M. Eglen, Ph.D., Corning Life Sciences (Tewksbury, MA, USA)

  • Review Article: Human iPS Cell-Derived Patient Tissues and 3D Cell Culture Part 1: Target Identification and Lead Optimization

  • Review Article: Human iPS Cell-Derived Patient Tissues and 3D Cell Culture Part 2: Spheroids, Organoids and Disease Modeling

  • Original Research: Mutation Profiles in Glioblastoma 3D Oncospheres Modulate Drug Efficacy

  • Original Research: Full Factorial Microfluidic Designs and Devices for Parallelizing Human Pluripotent Stem Cell Differentiation

  • Original Research: A Single-Step Self-Assembly Approach for the Fabrication of Aligned and Multilayered Three-Dimensional Tissue Constructs Using Multidomain Peptide Hydrogel
-end-
Free access to the SLAS Technology special collection on Advances in 3D and Organoid Cell Culture at http://journals.sagepub.com/toc/jlad/24/1 is sponsored by Corning Life Sciences. For more information about SLAS and its journals, visit http://www.slas.org/journals. For more information about Corning Life Sciences, visit http://www.corning.com/lifesciences.

PDFs of these articles are available to credentialed media outlets upon request. Contact jhronek@slas.org.

About our Society and Journals

SLAS (Society for Laboratory Automation and Screening) is an international community of nearly 20,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS DISCOVERY:2016 Impact Factor 2.355. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA). SLAS Discovery (Advancing Life Sciences R&D) was previously published (1996-2016) as the Journal of Biomolecular Screening (JBS).

SLAS TECHNOLOGY: 2016 Impact Factor 2.632. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore). SLAS Technology (Translating Life Sciences Innovation) was previously published (1996-2016) as the Journal of Laboratory Automation (JALA).

Follow SLAS on Twitter at @SLAS_Org.

Follow SLAS on Facebook at SocietyforLaboratoryAutomationandScreening.

Follow SLAS on YouTube at SLASvideo.

Follow SLAS Americas on LinkedIn at Society for Laboratory Automation and Screening (SLAS Americas).

Follow SLAS Europe on LinkedIn at Society for Laboratory Automation and Screening Europe (SLAS Europe).

SLAS (Society for Laboratory Automation and Screening)

Related Drug Discovery Articles:

Choosing a simpler path to drug discovery
Researchers from Kyoto University, MIT, and ETH Zurich have developed a compact drug discovery method using simple models and small data sets.
Drug discovery researchers awarded grant to refine malaria drug
A research team from the Virginia Tech Center for Drug Discovery has received a $431,126 two-year grant from the National Institutes of Health to make improved versions of a promising compound called MMV008138, or 8138 for short.
New computational tool may speed drug discovery
A new computational tool called fABMACS is helping scientists see beyond static images of proteins to more efficiently understand how these molecules function, which could ultimately speed up the drug discovery process.
Paving the road to drug discovery
When treated with an anti-cancer drug, ICRF-193, fission yeast produce an 'arched and snapped' phenotype that may be used to screen for other cancer drugs.
Open-source drug discovery a success
In what is being called the first-ever test of open-source drug-discovery, researchers from around the world have successfully identified compounds to pursue in treating and preventing parasite-borne illnesses such as malaria as well as cancer.
Celgene joins DNDi's 'Drug Discovery Booster'
The biopharmaceutical company Celgene has become the fifth company to join the 'Neglected Tropical Diseases Drug Discovery Booster' consortium, a new initiative to accelerate and cut the cost of early stage drug discovery for two of the world's most neglected diseases, leishmaniasis and Chagas disease.
Speeding up drug discovery to fight tuberculosis
Researchers at the Institute for Systems Biology and Center for Infectious Disease Research in Seattle have deciphered how the human pathogen Mycobacterium tuberculosis is able to tolerate the recently approved FDA drug bedaquiline.
Deep learning applied to drug discovery and repurposing
Scientists from Insilico Medicine in collaboration with Datalytic Solutions and Mind Research Network trained deep neural networks to predict the therapeutic use of large number of multiple drugs using gene expression data obtained from high-throughput experiments on human cell lines.
Breast cancer drug discovery offers hope of new treatments
A new drug discovery approach has yielded a potential therapy for breast cancer that may be more effective than existing medicines.
Current cancer drug discovery method flawed: Study
The primary method used to test compounds for anti-cancer activity in cells is flawed, Vanderbilt University researchers report May 2 in Nature Methods.

Related Drug Discovery Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".