Nav: Home

Dual control: Plant peptide hormone generates distinct cell structures for water flow

January 23, 2019

Osaka, Japan - Water flow through plants is critical to our food supply: without proper water flow, plants cannot carry out photosynthesis, or grow or reliably produce flowers, fruit or seeds. Water flows within specialized structures from the roots, through the stem to the leaves, where its evaporation is regulated by microscopic pores called stomata. All the water-conducting structures are produced by tightly controlled developmental sequences: cells must divide to produce the necessary cell types in the correct place at the right time. But many details of how these complex developmental processes are controlled remain unclear.

Osaka University researchers, in collaboration with laboratories in China, Germany, and Japan, have revealed a key piece in the jigsaw of mechanisms that control plant cell development. The team found that a peptide hormone is the signaling molecule that controls the development of two completely different types of cells, both of which are involved in creating the cellular structures for water flow. The hormone does this by binding to two distinct receptors in the two locations. The team recently published their findings in Nature Plants.

The team used the small plant Arabidopsis (Thale cress), which grows and reproduces rapidly and has a smaller, simpler genome than most crop plants. Their research methods included genetic modification, studying the plant's anatomy by microscopy using fluorescent dyes, and producing mutant plants using the latest gene editing technologies.

The researchers showed that the genes encoding the peptide hormone CLE9/10 are active in cells that lead to the development of stomata in the leaf and also in cells that are precursors of water-conducting vessels (the xylem) in the root.

"In the primordial cells in leaves, binding of CLE9/10 to a protein receptor controls the number of stomatal pores," said lead author Pingping Qian. "But in the roots, it binds to a different protein receptor, and there it controls the production of xylem vessels."

As well as identifying these two different receptors, the study also revealed that a co-receptor protein is involved in the leaf signaling system.

"In animals, there are examples of signaling molecules that are perceived by multiple receptors," says corresponding author Tatsuo Kakimoto. "This study shows that the same types of signaling systems operate in plants. It is interesting that the two developmental processes, involving distinct receptors in different parts of the plant, generate completely different structures that are both essential for water flow. These results have implications for understanding how multiple processes in plant development are coordinated."
The article, "The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors" was published in Nature Plants at DOI:

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.


Osaka University

Related Plants Articles:

Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
How plants can tell friend from foe
The plant's immune system can recognize whether a piece of RNA is an invader or not based on whether the RNA has a threaded bead-like structure at the end, say University of Tokyo researchers.
Plants at the pump
Regular, unleaded or algae? That's a choice drivers could make at the pump one day.
How do people choose what plants to use?
There are about 400,000 species of plants in the world.
Defend or grow? These plants do both
From natural ecosystems to farmers' fields, plants face a dilemma of energy use: outgrow and outcompete their neighbors for light, or defend themselves against insects and disease.
How do plants protect themselves against sunburn?
To protect themselves against UV-B, which are highly harmful, plants have developed cellular tools to detect them and build biochemical defenses.
Pea plants demonstrate ability to 'gamble' -- a first in plants
An international team of scientists from Oxford University, UK, and Tel-Hai College, Israel, has shown that pea plants can demonstrate sensitivity to risk -- namely, that they can make adaptive choices that take into account environmental variance, an ability previously unknown outside the animal kingdom.
A 'Fitbit' for plants?
Knowing what physical traits a plant has is called phenotyping.
How plants conquered the land
Research at the University of Leeds has identified a key gene that assisted the transition of plants from water to the land around 500 million years ago.
Plants are 'biting' back
Calcium phosphate is a widespread biomineral in the animal kingdom: Bones and teeth largely consist of this very tough mineral substance.

Related Plants Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.