Nav: Home

Study sheds light on brain cell changes in people with MS

January 23, 2019

Fresh insights into the types of cells found in the brains of people with multiple sclerosis could help develop improved therapies, research has found.

The study focused on cells in the brain that help to repair damage to nerve cells caused by the disease.

Researchers identified various types of these cells - called oligodendrocytes. People with MS have different types of oligodendrocytes than healthy people, the study found.

The findings could shed new light on how the disease progresses and could also help scientists develop treatments.

Experts from the University of Edinburgh and the Karolinska Institute in Sweden analysed post-mortem brain samples from five people without neurological disease and four people with the most advanced form of multiple sclerosis, called progressive MS.

Working with researchers from the healthcare company Hoffmann-La Roche, the team used an advanced genetic analysis technique called single nuclear RNA-Seq.

This technique provides a snapshot of all the genes that have been switched on in a single brain cell, providing insights into how each individual cell functions.

By doing this on thousands of brain cells, the approach can build a detailed picture of all the cell types that are present in the brain from that person.

The researchers found there are several types of oligodendrocytes, and that the ratio of these cells in people with MS differs from healthy people.

These differences suggest the oligodendrocytes are functioning differently in the brains of people with MS, which might be key to understanding how disease progresses, the researchers say.

MS occurs when the protective sheath that surrounds nerve cells - called myelin - becomes damaged. This means that nerve cells cannot transmit signals around the body as effectively. It also leaves nerve cells vulnerable to damage, and eventually the nerves can die.

Oligodendrocytes are found in the brain and spinal cord where they repair damaged myelin. In people with MS, this process does not work as well as in healthy people.

Many treatments under development for MS are designed to target oligodendrocytes in the hope of boosting myelin repair.

Studies with mice had previously identified several types of oligodendrocytes in the mouse brain, suggesting each have slightly different functions. This is the first study to show that people also have several types of oligodendrocytes in the brain.

Researchers say the differences in types of oligodendrocytes they found in people with MS might explain why their myelin repair process does not work as well.

The study also found people have and different types of oligodendrocytes than mice. The findings suggest the cells may work differently in each species. This could have important implications for how findings from mouse studies of MS are interpreted.

Multiple sclerosis is a lifelong condition that causes balance problems, fatigue and progressive disability. Around 2.5 million people are living with the condition worldwide. There are currently no treatments for the progressive form of the disease.

The study, published in Nature, was funded by the UK MS Society, the European Union and the European Research Council. The European Committee for Treatment and Research of Multiple Sclerosis and the Wellcome Trust also funded the research, among others.

Professor Charles ffrench-Constant, of the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh, said: "We found that oligodendrocytes are a diverse population of cells and that different types are likely to have different functions in the brain."

Professor Anna Williams, of the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh, said: "Understanding which types of oligodendrocytes are most beneficial in repairing myelin will be crucial for maximising the chances of developing much-needed treatments for MS."

Associate Professor Gonçalo Castelo-Branco, of the Karolinska Institute, said: "Our findings highlight the power of this technology to study the mechanisms of human diseases such as MS. We predict that the widespread use of this technology with larger numbers of samples will further enhance our understanding of MS."

Dr Susan Kohlhaas, Director of Research at the MS Society, said: "More than 100,000 people in the UK have MS, and many of them are still without effective treatments. Those living with progressive forms of MS desperately need new options that repair myelin damage and halt progression.

"We believe that one day we can stop MS and projects like this are going to make that happen more quickly."
-end-


University of Edinburgh

Related Multiple Sclerosis Articles:

New biomarkers of multiple sclerosis pathogenesis
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain.
Using telemedicine to treat multiple sclerosis
Multiple sclerosis (MS) clinicians face continued challenges in optimizing neurological care, especially for people with advanced MS living in medically underserved communities.
Improving symptom tracking in multiple sclerosis
With a recent two-year, $833,000 grant from the US Department of Defense, kinesiology professor Richard van Emmerik and colleagues at the University of Massachusetts Amherst hope to eventually help an estimated 1 million people worldwide living with progressive multiple sclerosis by creating an improved diagnostic test for this form of the disease, which is characterized by a steady decrease in nervous system function.
An antibody-based drug for multiple sclerosis
Inserm Unit U919, directed by Professor Denis Vivien has developed an antibody with potential therapeutic effects against multiple sclerosis.
Four new risk genes associated with multiple sclerosis discovered
Scientists of the Technical University of Munich and the Max Planck Institute of Psychiatry have identified four new risk genes that are altered in German patients with multiple sclerosis.
PET detects neuroinflammation in multiple sclerosis
The triggers of autoimmune inflammation in multiple sclerosis (MS) have eluded scientists for many years, but molecular imaging is bringing researchers closer to identifying them, while providing a means of evaluating next-generation therapies for MS, say researchers introducing a study at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging.
Scientists find genetic cause of multiple sclerosis
Researchers have discovered a rare genetic mutation that makes it probable that a person will develop multiple sclerosis (MS).
ANKRD55: A new gene involved in Multiple Sclerosis is discovered
The Ikerbasque researcher Koen Vandenbroeck, who heads the Neurogenomiks laboratory which reports to the Achucarro centre and the UPV/EHU-University of the Basque Country, together with other national and international groups, has shown that a genetic variant in the 5q11 chromosome, which is associated with susceptibility to developing multiple sclerosis, greatly regulates a gene known as ANKRD55.
Children with and without multiple sclerosis have differences in gut bacteria
In a recent study, children with multiple sclerosis had differences in the abundance of specific gut bacteria than children without the disease.
Rituximab is superior to fingolimod for certain patients with multiple sclerosis
A new study indicates that rituximab is more effective than fingolimod for preventing relapses in patients with highly active multiple sclerosis switching from treatment with natalizumab.

Related Multiple Sclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...