Nav: Home

Small metabolites have big effects on the intestinal immune response

January 23, 2019

Osaka, Japan - For at least a decade, researchers have known that normal bacteria in the gut can induce intestinal immune cells to extend tentacle-like structures, known as dendrites, to "capture" antigens, triggering both immediate and long-term immune responses. What was less clear was how the bacteria activate this process. Now, a research team led by Osaka University has found that the molecules responsible have been hiding in plain sight.

Metabolites are small molecules produced during metabolism, the chemical processes that occur inside all living cells to keep them ticking over. Metabolic pathways have been intensively studied in many organisms, with most common metabolites having very few secrets. Yet, in a recent paper published in the journal Nature, the team describes how they made an important discovery--two well-known metabolites, pyruvate and lactate, are in fact the instigators of dendrite protrusion by CX3CR1+ macrophages in the small intestine.

"After studying the available research, we hypothesized that bacterial metabolites present in the small intestine could possibly mediate dendrite protrusion," explains lead author Naoki Morita. "After purifying different fractions from the contents of the small intestines of mice, we discovered that lactic acid and pyruvic acid, produced by lactic acid bacteria in the normal gut flora, act directly on intestinal macrophages."

Next, the researchers identified GPR31, a protein residing on the surface of small intestinal macrophages, as the specific receptor for the two metabolites. Mice lacking GPR31 showed reduced dendrite protrusion by CX3CR1+ cells after being administered pyruvate or lactate and, as a result, decreased antibody production following infection with a non-pathogenic strain of Salmonella. However, the most significant revelation was yet to come.

"We then examined whether pre-treatment of normal mice with pyruvate or lactate as well as non-pathogenic Salmonella could protect against infection with a virulent strain of the bacterium," says co-lead author Eiji Umemoto. "As we predicted, normal pre-treated mice, but not pre-treated GPR31-defective mice, showed increased survival and an enhanced immune response following infection with the virulent Salmonella strain."

Corresponding author Kiyoshi Takeda explains that the research has multiple clinical applications. "Because these metabolites enhance the immune response, they could be used to improve the effectiveness of oral vaccines, while GPR31 is a promising target for therapies aimed at eliminating intestinal pathogens. Because of this, we expect that lactic acid, pyruvic acid, and GPR31 will all be explored in the near future as new targets for activating immunity."
-end-
The article, "GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites," was published in Nature at DOI: https://doi.org/10.1038/s41586-019-0884-1.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Immune Response Articles:

Discovering the early age immune response in foals
Researchers at the Cornell University College of Veterinary Medicine have discovered a new method to measure tiny amounts of antibodies in foals, a finding described in the May 16 issue of PLOS ONE.
Nixing the cells that nix immune response against cancer
For first time, study characterizes uptick of myeloid-derived suppressor cells in the spleens of human cancer patients, paving the way for therapies directed against these cells that collude with cancer.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Tailored organoid may help unravel immune response mystery
Cornell and Weill Cornell Medicine researchers report on the use of biomaterials-based organoids in an attempt to reproduce immune-system events and gain a better understanding of B cells.
Tweaking the immune response might be a key to combat neurodegeneration
Patients with Alzheimer's or other neurodegenerative diseases progressively loose neurons yet cannot build new ones.
Estrogen signaling impacted immune response in cancer
New research from The Wistar Institute showed that estrogen signaling was responsible for immunosuppressive effects in the tumor microenvironment across cancer types.
No platelets, no immune response
When a virus attacks our organism, an inflammation appears on the affected area.
Malaria: A genetically attenuated parasite induces an immune response
With nearly 3.2 billion people currently at risk of contracting malaria, scientists from the Institut Pasteur, the CNRS and Inserm have experimentally developed a live, genetically attenuated vaccine for Plasmodium, the parasite responsible for the disease.
New finding will help target MS immune response
Researchers have made another important step in the progress towards being able to block the development of multiple sclerosis and other autoimmune diseases.
Flu infection reveals many paths to immune response
A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways.

Related Immune Response Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".