Nav: Home

UC San Diego researchers first to use CRISPR/Cas9 to control genetic inheritance in mice

January 23, 2019

Biologists at the University of California San Diego have developed the world's first CRISPR/Cas9-based approach to control genetic inheritance in a mammal.

Scientists around the world have been using CRISPR/Cas9 in a variety of plant and animal species to edit genetic information. One approach to editing the genome can control which of the two copies of a gene is passed to the next generation. While such "active genetics" approaches have been developed in recent years in insects, creating such tools in mammals is more challenging, and testing them takes much longer due to the longer time between generations.

Publishing their work January 23 in the journal Nature, a joint team of UC San Diego researchers developed a new active genetic technology in mice. The achievement of UC San Diego graduate student Hannah Grunwald, Assistant Researcher Valentino Gantz and colleagues led by Assistant Professor Kimberly Cooper, lays the groundwork for further advances based on this technology, including biomedical research on human disease.

"Our motivation was to develop this as a tool for laboratory researchers to control the inheritance of multiple genes in mice," said Cooper. "With further development we think it will be possible to make animal models of complex human genetic diseases, like arthritis and cancer, that are not currently possible."

To demonstrate feasibility in mice, the researchers engineered an active genetic "CopyCat" DNA element into the Tyrosinase gene that controls fur color. When the CopyCat element disrupts both copies of the gene in a mouse, fur that would have been black is instead white, an obvious readout of the success of their approach. The CopyCat element also was designed so that it cannot spread through a population on its own, in contrast with CRISPR/Cas9 "gene drive" systems in insects that were built on a similar underlying molecular mechanism.

Over the two-year project period, the researchers used a variety of strategies to determine that the CopyCat element could be copied from one chromosome to the other to repair a break in the DNA targeted by CRISPR/Cas9. As a result, the element that was initially present on only one of the two chromosomes was copied to the other chromosome. In one of the families, as many as 86 percent of offspring inherited the CopyCat element from the female parent instead of the usual 50 percent.

The new approach worked in female mice during the production of eggs, but not during the production of sperm in males. This is possibly due to a difference in the timing of male and female meiosis, a process that normally pairs chromosomes to shuffle the genome and may assist this engineered copying event.

According to UC San Diego Professor Ethan Bier, a study coauthor, the results "open the way for various applications in synthetic biology including the modular assembly of complex genetic systems for studying diverse biological processes."

Cooper and members of her lab are now springboarding off this first mammalian active genetic success--based on a single gene--and attempting to expand the tool to multiple genes and traits.

"We've shown that we can convert one genotype from heterozygous to homozygous. Now we want to see if we can efficiently control the inheritance of three genes in an animal. If this can be implemented for multiple genes at once, it could revolutionize mouse genetics," said Cooper.

While the new technology was developed for laboratory research, some have envisioned future gene drives that would build on this approach in the wild for efforts to restore the balance of natural biodiversity in ecosystems overrun by invasive species, including rodents.

"With additional refinements, it should be possible to develop gene-drive technologies to either modify or possibly reduce mammalian populations that are vectors for disease or cause damage to indigenous species," said Bier.

However, these data also indicate that technical improvements needed for practical use in the wild allow time for careful consideration of which applications of this new technology could and should be implemented. The researchers note, however, that their results demonstrate a substantial advance that might already decrease the time, cost and number of animals needed to advance biomedical research on human diseases and to understand other types of complex genetic traits.

"We are also interested in understanding the mechanisms of evolution," said Cooper. "For certain traits that have evolved over tens of millions of years, the number of genetic changes is greater than we can currently assemble in mice to understand what caused bat fingers to grow into a wing, for example. So we want to make lots of these active genetic tools to understand the origins of mammalian diversity."
-end-
Former UC San Diego Postdoctoral Fellow Gunnar Poplawski (co-first author, now at the National University of Singapore) and Staff Research Associate Xiang-ru Xu also contributed to the study.

University of California - San Diego

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".