Nav: Home

Gene-edited disease monkeys cloned in China

January 23, 2019

The first cohort of five gene-edited monkey clones made from fibroblasts of a monkey with disease phenotypes were born recently at the Institute of Neuroscience (ION) of Chinese Academy of Sciences (CAS) in Shanghai. The expression of BMAL1, a core circadian regulatory transcription factor, was knockout in the donor monkey using CRISPR/Cas9-mediated gene editing at the embryo stage, and the fibroblasts of the donor monkey were used to clone five monkeys using the method of somatic cell nuclear transfer, the same method that generated Zhong Zhong and Hua Hua, the first two cloned monkeys, last year. This major advance, reported on-line in two articles in the journal National Science Review on January 24, demonstrates that a population of customized gene-edited macaque monkeys with uniform genetic background will soon be available for biomedical research.

The first article describes the generation of gene-edited donor monkeys, using CRISPR-Cas9 method to edit the BMAL1 gene of in vitro fertilized monkey embryos. These monkeys exhibited a wide-range of circadian disorder phenotypes, including reduced sleep time, elevated night-time locomotive activities, dampened circadian cycling of blood hormones, increased anxiety and depression, as well as schizophrenia-like behaviors. "Disorder of circadian rhythm could lead to many human diseases, including sleep disorders, diabetic mellitus, cancer, and neurodegenerative diseases, our BMAL1-knock out monkeys thus could be used to study the disease pathogenesis as well as therapeutic treatments" says Hung-Chun Chang, senior author and investigator of the Chinese Academy of Sciences Institute of Neuroscience.

The second article describes the cloning of macaque monkeys from the fibroblast of a BMAL1-knockout monkey, using the method of somatic cell nuclear transfer. In this method, the researchers removed the nucleus from a monkey oocyte (egg cell) and replaced it with another nucleus from a fibroblast, a differentiated somatic (body) cell. This reconstructed egg then developed into an embryo that carries the genes of the replacement nucleus. The embryo was then transfer to the womb of a surrogate female monkey that later gave birth to the cloned monkey. In the previous work, Zhong Zhong and Hua Hua were generated by using fibroblasts from an aborted fetus. The present work succeeded in using fibroblasts from a young adult gene-edited donor monkey with disease phenotypes. "Our approach is to perform gene-editing in fertilized embryos to first generate a group of gene-edited monkeys, and then select one monkey that exhibits correct gene editing and most severe disease phenotypes as the donor monkey for cloning by somatic cell nuclear transfer" says Qiang Sun, senior author of the paper and Director of ION's Nonhuman Primate Research Facility. "We believe that this approach of cloning gene-edited monkeys could be used to generate a variety of monkey models for gene-based diseases, including many brain diseases, as well as immune and metabolic disorders and cancer". The researchers plan to continue improving the technique in order to increase the efficiency of cloning. The group is expecting more macaque clones carrying disease-causing gene mutations to be generated in the coming years.

The Institute of Neuroscience, CAS is following strict international guidelines for animal research. "This work required coordinated efforts of many laboratories, and serves as a clear example of the efficient team work that is highly emphasized by CAS" says Mu-ming Poo, A co-author on both studies, who directs the Institute of Neuroscience and helps to supervise the project. "This line of research will help to reduce the amount of macaque monkeys currently used in biomedical research around the world". "Without the interference of genetic background, a much smaller number of cloned monkeys carrying disease phenotypes may be sufficient for pre-clinical tests of the efficacy of therapeutics" Poo says.
-end-
This work was supported by grants from Chinese Academy of Sciences, Shanghai Municipal Government Bureau of Science and Technology, and Ministry of Science and Technology of China.

For more details, see:

Qiu, P. et al: "BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders". National Science Review. DOI:10.1093/nsr/nwz002

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwz002

Liu, Z. et al. "Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer ". National Science Review. DOI:10.1093/nsr/nwz003

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwz003

About the journal

Under the auspices of the Chinese Academy of Sciences, National Science Review is a leading comprehensive journal published in English that aims at reporting significant advances in all areas of science, including physics and mathematics, chemistry, life sciences, earth sciences, materials science, and information sciences.

Press Conference Information

Author Contacts:

Hung-Chun Chang,
Investigator of Institute of Neuroscience
Chinese Academy of Sciences
hcchang@ion.ac.cn

Qiang Sun
Director of Nonhuman Primate Research Facility
Institute of Neuroscience
Chinese Academy of Sciences
+ 86-21-54921757
qsun@ion.ac.cn

Mu-ming Poo
Director of the Institute of Neuroscience
Chinese Academy of Sciences
mpoo@ion.ac.cn

Science China Press

Related Fibroblasts Articles:

When healthy cells stimulate the migration of tumor cells
Estrogens act as a driving force of both healthy and cancerous mammary cell growth by binding to receptors that include GPER, which is generally located in cell membranes.
New understanding of chronic lung inflammatory diseases unfolding
Researchers studying chronic inflammation that can lead to the development of lung diseases such as asthma, pulmonary fibrosis, and cancer, are focusing on the role cytokines play in regulating the behavior of fibroblast cells and the extracellular matrix.
Scientists discover new mechanism that leads to inflammation in rheumatoid arthritis
New research findings published in the Journal of Leukocyte Biology, suggest that synovial CD4+ T cells that produce IL-21 contribute to joint inflammation by activating synovial fibroblasts in rheumatoid arthritis patients.
HIV hijacks common cells to spread infection
Scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF), together with collaborators in Europe, discovered that a common type of cell within the human reproductive and intestinal tracts assists HIV in infecting immune cells.
Fibroblasts could provide new target for treatment of rheumatoid arthritis
A study led by researchers at the University of Birmingham reveals the key role of different types of fibroblast cells in the development of rheumatoid arthritis, opening up a new avenue for research into treatment of the disease.
Study shows low-dose chemotherapy regimens could prevent tumor recurrence in some cancers
Conventional, high-dose chemotherapy treatments can cause the fibroblast cells surrounding tumors to secrete proteins that promote the tumors' recurrence in more aggressive forms, researchers have discovered.
Reason for pancreatic cancer's resistance to chemotherapy found
A pioneering University of Liverpool research team have published a study that identifies the mechanism in the human body that causes resistance of pancreatic cancer cells to chemotherapy.
How the heart turns into bone
Connective tissue cells in the heart turn into bone-producing cells in response to injury, UCLA scientists report Nov.
New findings show promise for treatment of Graves' disease and other ocular disorders
A new class of therapies may be on the horizon for thyroid eye disease (TED) and other destructive scarring conditions.
Removing cellular bookmarks smooths the path to stem cells
In reading, a bookmark tells where you stopped. Cells use bookmarks too, specific proteins to help remember what collection of genes needs to be turned on again after cell division.

Related Fibroblasts Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...