Nav: Home

New vaccine offers fresh take on malaria fight

January 23, 2019

Early research on a new approach to protecting against malaria is offering promising, potentially long-lasting results against the persistent parasite that sickens hundreds of millions people each year.

The approach uses a cytomegalovirus-based platform that's already being used in vaccines being developed to battle HIV and tuberculosis. This new vaccine reduced the malaria-causing parasite's release from the liver and into the blood of infected rhesus macaques by 75 to 80 percent, reports a paper published in the journal PLOS ONE.

"The problem with most vaccines is that their effectiveness is often short-lived," said the study's lead author, Klaus Früh, Ph.D., of OHSU's Vaccine & Gene Therapy Institute and a professor of molecular and cellular biosciences at the OHSU School of Medicine. "Our cytomegalovirus-based vaccine platform can create and keep immunity for life. With further research and development, it could offer a lifetime of protection against malaria."

Malaria is a serious and sometimes fatal disease caused by Plasmodium parasites, which are spread to humans through mosquito bites. It can cause high fevers, shaking chills, flu-like illness and, in the worst cases, death. Worldwide, 216 million people were infected with malaria in 2016, leading to 445,000 deaths. The vast majority of infections occur in Africa.

The decades-long search for an effective malaria vaccine has been challenging. The World Health Organization is using one vaccine - known as RTS,S/AS01 or by its brand name, Mosquirix - as part of new, routine vaccination programs in three African countries. But RTS,S has been shown to only reduce malaria transmission in kids - in whom malaria is most often fatal - by 39 percent four years after it was administered. Its efficacy was further reduced to 4.4 percent seven years afterward. Vaccines against viruses and bacteria typically have protection rates of more than 90 percent.

Vaccine makeover

Most vaccines are designed to encourage the human body to respond to invading, disease-causing pathogens by creating antibodies that disable those pathogens. OHSU's new vaccine takes a different approach by using a weakened form of a common herpes virus - cytomegalovirus, or CMV - that infects most people without causing disease.

Früh and his colleagues weave tiny bits of their target pathogen into CMV. Those who receive the resulting, re-engineered CMV vaccine produce memory T-cells that can search for and destroy pathogen-infected cells. Studies have shown this approach enables vaccinated nonhuman primates to develop and maintain a high state of immunity years later.

The CMV vaccine platform has been licensed by Vir Biotechnology, Inc., of San Francisco, which plans to lead a human clinical trial for a CMV-based HIV vaccine in 2019. The same basic platform is also being used in a new TB vaccine, and is now the basis for this malaria vaccine.

Nuts & bolts

Früh and his colleagues pursued a malaria vaccine because they noticed the memory T-cells their CMV-based vaccine produce exist in high concentrations in the liver, where the malaria parasite hides out shortly after infecting a human.

They developed two different versions of their CMV-based malaria vaccine while using four different proteins made by the Plasmodium parasite. The resulting vaccines delayed the parasite's appearance in the blood of 16 infected and vaccinated rhesus macaques by eliminating between 75 and 80 percent of parasites from the liver. A year later, the vaccinated nonhuman primates still had immunity against malaria, while eight control animals that weren't vaccinated did not.

In an effort to make their vaccine 100 percent protective against malaria, the research team will evaluate 15 different Plasmodium-made proteins for the vaccine. They will also examine combining their CMV-based vaccine with other experimental vaccines or the existing RTS,S vaccine.
-end-
The study was a collaboration between OHSU, the Naval Medical Research Center, National Institutes of Health and Fred Hutchinson Cancer Research Center. Früh conducted the study with animals at OHSU's Oregon National Primate Research Center.

This research was supported by the Military Infectious Diseases Research Program (grant F0351_12_NM) and the National Institutes of Health (grants R21AI103498, RO1AI059457, P511OD011092, R24 RR016001, HHSN 2722000900037C).

In our interest of ensuring the integrity of our research and as part of our commitment to public transparency, OHSU actively regulates, tracks and manages relationships that our researchers may hold with entities outside of OHSU. In regards to this research, OHSU and Drs. Fruh, Picker and Hansen have a significant financial interest in VIR Biotechnology Inc., a company that may have a commercial interest in the results of this research and technology.

REFERENCE: Scott G. Hansen, Jennie Womack, Isabel Scholz, Andrea Renner, Kimberly A. Edge, Guangwu Xu, Julia C. Ford, Mikayla Grey, Brandyce St. Laurent, John M. Turner, Shannon Planer, Al W. Legasse, Thomas L. Richie, Joao C. Aguiar, Michael K. Axthelm, Eileen D. Villasante, Walter Weiss, Paul T. Edlefsen, Louis J. Picker, Klaus Früh, "Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge," PLOS One, https://doi.org/10.1371/journal.pone.0210252, Jan. 23, 2019, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210252.

Related OHSU news stories:

Oregon Health & Science University

Related Malaria Articles:

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the Umeå University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.
Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.
New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.
Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.
Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.
Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.
Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.
Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.
The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.
Free malaria tests coupled with diagnosis-dependent vouchers for over-the-counter malaria treatment
Coupling free diagnostic tests for malaria with discounts on artemisinin combination therapy (ACT) when malaria is diagnosed can improve the rational use of ACTs and boost testing rates, according to a cluster-randomized trial published this week in PLOS Medicine by Wendy Prudhomme O'Meara of Duke University, USA, and colleagues.
More Malaria News and Malaria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab