Nav: Home

Taking magnetism for a spin: Exploring the mysteries of skyrmions

January 23, 2019

Scientists at the U.S. Department of Energy's Ames Laboratory have discovered the relaxation dynamics of a zero-field state in skyrmions, a spinning magnetic phenomenon that has potential applications in data storage and spintronic devices.

Skyrmions are nanoscale whirls or vortices of magnetic poles that form lattices within a magnetic material, a type of quasiparticle that can zip across the material, pushed by electrical current. Those properties have captured the fascination of scientists, who think the phenomenon could lead to the next big advance in data storage, making digital technology even faster and smaller.

There are some big challenges to overcome, however. Until recently skyrmions were a phenomenon only observed at extreme low temperature. Also, external magnetic forces makes them currently impractical for applications.

"In order to be really useful in a device, these magnetic vortices need to be able to exist without the 'help' of an external magnetic field," said Lin Zhou, a scientist in the Ames Laboratory's Division of Materials Sciences and Engineering.

With that in mind, she and other researchers at Ames Laboratory investigated FeGe, an iron-germanium magnetic material that has demonstrated skyrmions in the highest temperature ranges to date in crystals with a similar, or B20 structure.

Ames Lab scientists with external collaborators were able to establish a skyrmion lattice in a sample through exposure to magnetic fields and supercooling with liquid nitrogen. With a high resolution microscopy method called Lorentz transmission electron microscopy (L-TEM), the team was able to observe the skyrmion lattice in zero magnetic field, and then observe the decay of the skyrmions as the temperature warmed. This direct observation yielded critical new information about how skyrmions behave and how they revert back to a 'normal' (what scientists call metastable) magnetic state.

"We've stabilized these skyrmions without a magnetic field, and our microscopy techniques allowed us to really see how the vortices change over time, temperature, and magnetic field; we think it provides a very solid foundation for theorists to better understand this phenomenon," Zhou said.
The research is further discussed in the paper, "Relaxation Dynamics of Zero-Field Skyrmions over a Wide Temperature Range," authored by Licong Peng, Ying Zhang, Liqin Ke, Tae-Hoon Kim, Qiang Zheng, Jiaqiang Yan, X.-G. Zhang, Yang Gao, Shouguo Wang, Jianwang Cai, Boagen Shen, Robert J. McQueeney, Adam Kaminski, Matthew J. Kramer, and Lin Zhou; and published in Nano Letters.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Ames Laboratory

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at