Nav: Home

Stars shrouded in iron dust

January 23, 2019

Stars with masses between one and eight times the mass of the Sun evolve along the asymptotic giant branch (AGB) before ending their lives as white dwarfs. It is during this rapid but crucial phase when the stars expand to huge dimensions and cool down, losing a major fraction of their mass due to the strong stellar winds. The low temperature and high density of the winds provide ideal conditions for the condensation of dust grains in their circumstellar envelopes.

The dust produced by the stars in their AGB phase and expelled into the interstellar medium is important for the lives of the galaxies, because this is an essential component for the formation of new stars, and also of planets. That is why characterising the type of dust (solid state organic components, or inorganic components) and the quantity of dust produced by these giant stars is very interesting to the astronomical community.

The journal The Astrophysical Journal Letters today is publishing a study which has answers to the puzzles of a peculiar group of massive AGB stars situated in the Large Magellanic Cloud. Comparing the infrared observations made with the Spitzer Space Telescope (and predictions for the future James Webb Space Telescope) with the theoretical models developed by this group, they have discovered that these stars have masses around 5 solar masses, were formed around 100 million years ago, and are poor in metals (such as iron, magnesium and silicon). Unexpectedly they have discovered that the infrared spectral energy distributions can be reproduced only if iron dust is the principal dust component of their circumstellar envelopes. This is uncommon around massive AGB stars. Before it was known that they mainly produced silicates, large quantities of dust rich in oxygen and silicon, as well as magnesium. But this finding is even more surprising if we consider the metal poor environment of the stars under study.

We have characterized for the first time this class of stars with unique spectral properties. The low metallicity of these giant stars is the essential ingredient which gives peculiar conditions permitting the formation of large quantities of iron dust" explains Ester Marini, the first author of the article and a doctoral student at the Roma Tre University. She adds "In fact, in metal poor environments the complex nucleosynthesis within massive AGB stars is so advanced that it burns up almost all the magnesium and oxygen, necessary to form other types of dust, such as the silicates".

Under these particular conditions iron dust becomes the main component of the dust formed by these stars. "This result is an important confirmation of the theory of iron dust in metal poor environments, already hinted at in independent observational evidence" says the IAC researcher Aníbal García Hernández, a co-author of the work, and one of the initiators of the fruitful collaboration between the IAC and the Osservatorio Astronomico di Roma (OAR-INAF) on these type of giant AGB stars.

"The arrival of the James Webb Space Telescope (JWST) will open up new possibilities for investigating this case in depth", comments Flavia Dell'Agli, a postdoctoral researcher at the IAC, and second author of the article. She adds "That future telescope will greatly enhance the number of resolved extragalactic AGB stars" and that the MIRI instrument on the JWST will be "ideal for identifying this class of stars in other galaxies of the Local Group".
-end-


Instituto de Astrofísica de Canarias (IAC)

Related Iron Articles:

Tackling iron and zinc deficiencies with 'better' bread
The health effects of zinc and iron deficiencies can be devastating, particularly in developing countries.
Imprecise iron supplementation can spur increase in Salmonella
Individuals who do not produce enough iron are anemic, and often experience fatigue.
Treating nutritional iron-deficiency anemia in children
In a study published by JAMA, Jacquelyn M. Powers, M.D., M.S., of the Baylor College of Medicine, Houston, and colleagues compared two medications, ferrous sulfate and iron polysaccharide complex, for the treatment of nutritional iron-deficiency anemia in infants and children.
Cells pumping iron to prevent anemia
Researchers identify the gene Regnase-1 as a regulator for iron metabolism by degrading Transferrin Receptor 1 (TfR1) mRNA.
Helping plants pump iron
Salk researchers identify genetic variants that help plants grow in low-iron environments, which could improve crop yields.
Iron deficiency restrains marine microbes
Iron is a critical nutrient in the ocean. Its importance for algae and the nitrogen cycle has already been investigated in detail.
Compound corrects iron-delivery defects
Investigators from Brigham and Women's Hospital, in collaboration with colleagues at University of Illinois Champaign-Urbana, describe a compound known as Hinokitiol which can correct iron-delivery defects in preclinical models.
How photosynthetic cells deal with a lack of iron
University of Freiburg researchers discover a small RNA molecule in cyanobacteria that affects metabolic acclimation.
A novel form of iron for fortification of foods
Whey protein nanofibrils loaded with iron nanoparticles: ETH researchers are developing a new and highly effective way of fortifying iron into food and drinks.
Researchers 'iron out' graphene's wrinkles
Engineers at MIT have found a way to make graphene with fewer wrinkles, and to iron out the wrinkles that do appear.

Related Iron Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...