Predicting the degradation behavior of advanced medical devices

January 23, 2020

The results have been reported today in the first issue of the journal Cell Reports Physical Science. With the so-called Langmuir technique, the authors transfer the material into a 2D system, and thereby circumvent the complex transport processes that influence the degradation of three-dimensional objects. They created analytical models describing different polymer architectures that are of particular interest for the design of multifunctional implants and determined the kinetic parameters that describe the degradation of these materials. In the next step, the scientists want to use these data to carry out computer simulations of the decomposition of therapeutic polymer devices. Regulatory authorities already prescribe computer simulations of the performance of such devices, for example for some stents. The insights gained by the 2D degradation studies are certain to improve these simulations. By introducing a method to quickly understand and predict the degradation of polymer materials, the HZG researchers are contributing substantially to establishing innovative, multifunctional polymers for regenerative medicine.

Background - Multifunctional Biomaterials

An implementation of degradability can be especially helpful for implants such as sutures or staples. These objects are only needed temporarily as a mechanical support. Future medical implants are expected to perform much more complex tasks. These degradable devices will for example be able to be programmed in a compressed shape and in this way implantable by minimally invasive techniques, release a drug that supports the healing process, recruit the right cells to its surface and report back on the progress of the recovery. Here degradation is only one out of several functions that are integrated in the materials. Yet, degradation is highly critical, because it changes the material on a molecular level. In order to implement multiple functions into a material, its molecular structure is designed in a distinct, often complex way. Understanding how degradation affects this molecular architecture is key to ensuring that all the functions are executed as intended. The thin layer method presented in the study can have a transformative role for designing such degradable polymers.

Helmholtz-Zentrum Geesthacht / Centre für Centre for Materials and Coastal Research

Related Computer Simulations Articles from Brightsurf:

Promising computer simulations for stellarator plasmas
The turbulence code GENE (Gyrokinetic Electromagnetic Numerical Experiment), developed at Max Planck Institute for Plasma Physics (IPP) at Garching, Germany, has proven to be very useful for the theoretical description of turbulence in the plasma of tokamak-type fusion devices.

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations
GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations.

Simulations reveal how saltwater behaves in Earth's mantle
Giulia Galli's complex computer simulations reveal how saltwater behaves in the Earth's mantle, affecting everything from magma production to the carbon cycle.

Simulations on biologically relevant time scales
Freiburg researchers deliver new insights into molecular mechanisms relevant for drug development.

Supercomputer model simulations reveal cause of Neanderthal extinction
IBS climate scientists discover that according to new supercomputer model simulations, only competition between Neanderthals and Homo sapiens can explain the rapid demise of Neanderthals around 43 to 38 thousand years ago.

Coronavirus massive simulations completed on Frontera supercomputer
Coronavirus envelope all-atom computer model being developed by Amaro Lab of UC San Diego on NSF-funded Frontera supercomputer of TACC at UT Austin.

Simulations show fundamental interactions inside the cell
Actin filaments have several important functions inside cells. For one, they support the cell membrane by binding to it.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in M√ľnster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

Read More: Computer Simulations News and Computer Simulations Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to