Nav: Home

Portable device helps doctors diagnose sepsis faster

January 23, 2020

Sepsis claims one life every four seconds. It is the primary cause of death in hospitals, and one of the ten leading causes of death worldwide. Sepsis is associated with the body's inflammatory response to a bacterial infection and progresses extremely rapidly: every hour that goes by before it is properly diagnosed and treated increases the mortality rate by nearly 8%. Time is critical with sepsis, but the tests currently used in hospitals can take up to 72 hours to provide a diagnosis.

Many scientists are working on this critical issue, including those at Abionic, an EPFL spin-off. Researchers at the Laboratory of Bionanophotonic Systems (BIOS) at EPFL's School of Engineering have just unveiled a new technology. They have developed an optical biosensor that slashes the sepsis diagnosis time from several days to just a few minutes. Their novel approach draws on recent developments in nanotechnology and on light effects at a nano scale to create a highly portable, easy-to-use device that can rapidly detect sepsis biomarkers in a patient's bloodstream. And their device takes just a few minutes to deliver a result, like a pregnancy test.

Because the biosensor uses a unique plasmonics technology, it can be built from small, inexpensive components, yet it can achieve an accuracy on par with gold-standard laboratory methods. The device can screen a large panel of biomarkers and be adapted for the rapid diagnosis of a number of diseases. It was installed at Vall d'Hebron University Hospital in Spain and used in blind tests to examine patient samples from the hospital's sepsis bank. The researchers' technology is patent-pending, and their findings were recently published in Small.

Trapping biomarkers in nanoholes

The device employs an optical metasurface - in this case a thin gold sheet containing arrays of billions of nanoholes. The metasurface concentrates light around the nanoholes so as to allow for exceptionally precise biomarker detection. With this type of metasurface, the researchers can detect sepsis biomarkers in a blood sample with nothing more than a simple LED and a standard CMOS camera.

The researchers begin by adding a solution of special nanoparticles to the sample that are designed to capture the biomarkers. They then distribute this mixture on the metasurface. "Any nanoparticles that contain captured biomarkers are trapped quickly by antibodies on the nanoholes," says Alexander Belushkin, the lead author of the study. When an LED is applied, those nanoparticles partially obstruct the light passing through the perforated metasurface. "These nano-scale interactions are imaged by the CMOS camera and digitally counted in real-time at high precision," says Filiz Yesilkoy, the study's co-author. The generated images are used to rapidly determine whether disease biomarkers are present in a sample and, if so, in what concentration. They used the new device to measure the blood serum levels of two important sepsis relevant biomarkers, procalcitonin and C-reactive protein. Doctors can use this information to accelerate the triage of sepsis patients, ultimately saving lives.

"We believe our low-cost, compact biosensor would be a valuable piece of equipment in ambulances and certain hospital wards," says Hatice Altug, the head of BIOS. Scientists already have possible applications in mind. "There is an urgent need for such promising biosensors so that doctors can diagnosis sepsis accurately and quickly, thereby keeping patient mortality to a minimum," say Anna Fàbrega and Juan José González, lead doctors at Vall d'Hebron University Hospital.
-end-
Alexander Belushkin, Filiz Yesilkoy, Juan Jose González?López, Juan Carlos Ruiz?Rodríguez, Ricard Ferrer, Anna Fàbrega, Hatice Altug, Rapid and Digital Detection of Inflammatory Biomarkers Enabled by a Novel Portable Nanoplasmonic Imager, Small

Ecole Polytechnique Fédérale de Lausanne

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.