Nav: Home

How we learn is a quantum-like manner!

January 23, 2020

Imagine that you met a charming girl in school. She is an excellent student who concerns about the world welfare and is anti-war and anti-nuclear. Which do you think she is most likely to become in the future, a bank counter clerk, or, a bank counter clerk and feminist? Surveys show that most people think it's easy and choose the latter. Their choice is right. However, according to classical probability theory, the probability of the former is definitely higher than the latter because the former contains the latter. That paradox calls for more modeling to be established to better fit facts.

Prof. ZHANG Xiaochu and his group developed new frameworks to better explain such human decision-making behaviors using the concept of quantum, and their result is published in Nature Human Behaviour in January 2020. They established the quantum reinforcement learning framework for human decision-making applying concepts from quantum probability theory. For example, they chose quantum probability amplitude rather than classical probability to describe the tendency of selecting a specific action. In this way they proposed quantum models that are comparable to the best classical models. Furthermore, they checked the functional magnetic resonance imaging (fMRI) data of human brain playing the Iowa Gambling Task. They were surprised to find that several important internal-state-related variables involved in their models are represented in the medial frontal gyrus (MeFG), which is important for human learning and decision-making. This shows a unique quantum-like neural mechanism for how the internal state is changed due to external information. In other words, this implies that how human brain works is a quantum-like manner, which is worthy of further research.

These models bring people new perspectives on understanding how human brains run. It's inspired by machine learning development and is possible to elevate the efficiency of machine learning. In the meantime, the quantum-like mechanisms in the brain are still not fully understood. This deserves additional studies and is likely to change the history.
-end-
(Written by LIU Zige, edited by YE Zhenzhen, USTC News Center)

University of Science and Technology of China

Related Brain Articles:

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.