Jewel beetles' sparkle helps them hide in plain sight

January 23, 2020

Bright colors are often considered an evolutionary tradeoff in the animal kingdom. Yes, a male peacock's colorful feathers may help it attract a mate, but they also make it more likely to be seen by a hungry jungle cat. Jewel beetles (Sternocera aequisignata) and their green, blue, and purple iridescent wing cases may be an exception to the rule, researchers report January 23 in the journal Current Biology. They found that the insects' bright colors can act as a form of camouflage.

"The idea of 'iridescence as camouflage' is over 100 years old, but our study is the first to show that these early ignored or rejected ideas that 'changeable or metallic colors are among the strongest factors in animals' concealment' have traction," says first author Karin Kjernsmo (@KarinKjernsmo), an evolutionary and behavioral ecologist at the University of Bristol, United Kingdom. "Both birds and humans really do have difficulty spotting iridescent objects in a natural, complex, forest environment."

Similar to an abalone shell or holographic trading card, iridescent objects change color depending on the angle from which they're viewed, creating a flashy, rainbow-like effect. This effect has made jewel beetles a staple in insect jewelry due to their vibrant color.

The researchers placed iridescent and dull-colored (green, purple, blue, rainbow, and black) wing cases attached to mealworms onto various plants in a natural field setting and then observed how often birds attacked each group. This was followed by a human detection test, where respondents searched for the wing cases in the field.

Despite their gleam, Kjernsmo and her team found that the iridescent wing cases outpaced equally sized dull-colored wing cases at avoiding detection from birds and humans. Using both humans and birds is useful, Kjernsmo says, as with birds "you never know whether they can't see a prey item or if they see it but choose to ignore it. With human participants, you know exactly where the effects lie." Surprisingly, in both scenarios, the iridescent wing cases performed best (even beating leaf-colored green) at remaining undetected.

In addition, the ability to remain hidden became even more pronounced when the iridescent wing cases were placed against a glossy leaf background--adding "visual noise." Kjernsmo says that the masking ability of iridescence may be the result of "dynamic disruptive camouflage," which creates the illusion of inconsistent features and depth, confusing potential predators.

These results suggest that camouflage may be a primary function of iridescent structures in some species, reframing our current understanding behind its evolution and role in nature. "We don't for a minute imagine that the effect is something unique to jewel beetles; indeed, we'd be disappointed if it was," say Kjernsmo. "If we found that these beetles could be concealed by their colors, it increases the chances that many iridescent species could be using their colors this way."

Next, Kjernsmo will use artificial intelligence to get a better understanding of the evolution of camouflage in the wild. She is working with senior author Innes Cuthill, a behavioral ecologist, and Nick Scott-Samuel, an experimental psychologist, both at the University of Bristol, using machine learning to evolve the optimal camouflage patterns for different environments and comparing those to real animal colors.
-end-
Funding for this study was provided from the Biotechnology & Biological Sciences Research Council, UK.

Current Biology, Kjernsmo et al.: "Iridescence as Camouflage" https://www.cell.com/current-biology/fulltext/S0960-9822(19)31608-2

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Beetles Articles from Brightsurf:

Beetles cooperate in brood care
Ambrosia beetles are fascinating: they practice agriculture with fungi and they live in a highly developed social system.

"Helper" ambrosia beetles share reproduction with their mother
A new study shows for the first time that Xyleborus affinis beetles are cooperative breeders, where females disperse to found new nests or stay to help their mother raise siblings, while also reproducing themselves.

Tiny beetles a bellwether of ecological disruption by climate change
New research shows that as species across the world adjust where they live in response to climate change, they will come into competition with other species that could hamper their ability to keep up with the pace of this change.

Scientists reconstruct beetles from the Cretaceous
An international research team led by the University of Bonn (Germany) and Palacky University (Czech Republic) has examined four newly found specimens of the Mysteriomorphidae beetle using computer tomography and has been able to reconstruct them.

Pine beetles successful no matter how far they roam -- with devastating effects
Whether they travel only a few metres or tens of kilometres to a new host tree, female pine beetles use different strategies to find success--with major negative consequences for pine trees, according to new research by University of Alberta biologists.

Beetles changed their diet during the Cretaceous period
Like a snapshot, amber preserves bygone worlds. An international team of paleontologists from the University of Bonn has now described four new beetle species in fossilized tree resin from Myanmar, which belong to the Kateretidae family.

Jewel beetles' sparkle helps them hide in plain sight
Bright colors are often considered an evolutionary tradeoff in the animal kingdom.

Bark beetles control pathogenic fungi
Pathogens can drive the evolution of social behaviour in insects.

Sexual competition helps horned beetles survive deforestation
A study of how dung beetles survive deforestation in Borneo suggests that species with more competition among males for matings are less likely to go extinct, according to research led by scientists from Queen Mary University of London and Nanyang Technological University, Singapore.

Dung beetles get wind
Researchers have shown for the first time that these insects use different directional sensors to achieve the highest possible navigational precision in different conditions.

Read More: Beetles News and Beetles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.